题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5478
思路:
这个题目感觉有点奇葩。。。。。
当时做不出来,结束以后在数学大神的讲解以后,还是没懂。。。。
但是既然对所有的n都要成立,那么当n为1的时候,肯定是满足的,此时:a^(k1+b1)+b=0(mod c)。
也就是说,对于1个a,我能保证只有一个b使条件满足。
所以我可以暴力枚举a,然后得到b。
这个时候,我已经能够得到a、b的值了,然后我将a和b代入当n为2时候的式子里面:a^(2*k1+b1)+b^(k2+1)=0(mod c)。
如果能使条件满足,就是答案。
代码:
#include<stdio.h>
#include<string.h>
#define ll __int64
ll c;
ll qucikpow(ll a, ll b)
{
ll ans=1;
a=a%c;
while(b)
{
if(b%2)ans=(ans*a)%c;
a=(a*a)%c;
b=b/2;
}
return ans%c;
}
int main()
{
ll k1,b1,k2,i,j,k,b,icase,f;
icase=0;
while(~(scanf("%I64d%I64d%I64d%I64d",&c,&k1,&b1,&k2)))
{
icase++;
k=0;f=1;
printf("Case #%I64d:\n",icase);
for(i=1;i<c;i++)
{
ll ans=qucikpow(i,k1+b1)%c;
b=c-ans;
ll as=qucikpow(i,2*k1+b1)%c+qucikpow(b,k2+1)%c;
if(as%c==0){
f=0;
printf("%I64d %I64d\n",i,b);
}
}
if(f)printf("-1\n");
}
return 0;
}
这道题目,当时比赛结束后问别人,说是取随机数取了5组,暴力枚举a水过的。。。
当时觉得不可思议,现在想想,题目到最后的证明结果这么简单,所以才导致取随机数的方法能过题= =
感觉自己脑子不好使啊----