poj3254 Corn Fields(状压dp)

题目链接:

http://poj.org/problem?id=3254

题目大意:

给m*n的玉米地,里面可以放牧,1的位置可以放牧,0的位置不行。相邻的位置不能放牧。问一共有多少种放牧的方法。

范围:

n,m<=12。

思路:

状压dp。

可以为每一个行记录一个状态dp[i][state],表示在第i行的状态state是否满足。

所以在当前的第i行,我们可以通过判断各个状态是否与前一行的状态是否冲突,从而得到是否有新的情况。

那么我们就可以得到状态转移方程:dp[i][j]=∑dp[i-1][k]。

代码:

#include<stdio.h>
#include<string.h>
#define ll __int64
#define mod 100000000
int dp[20][2000],cur[20],state[2000];
int n,m,kk;
bool ok(int x)
{
    return x&(x<<1);
}
void init()
{
    for(int i=0;i<(1<<n);i++)
    {
        if(!ok(i))state[kk++]=i;    //先筛选出所有放牧不相邻的状态。
    }
}
bool judge(int x,int y)
{
    return x&y;
}
int main()
{
    int i,j,k,num;
    while(~scanf("%d%d",&m,&n))
    {
        k=0;
        init();
        memset(dp,0,sizeof(dp));
        for(i=1;i<=m;i++)
            for(j=1;j<=n;j++)
            {
                scanf("%d",&num);
                if(num==0)
                cur[i]+=1<<(n-j);  //判断当前行初始状态下能否放牧的情况
            }
        for(i=0;i<kk;i++)
        {
            if(!judge(state[i],cur[1]))  //边界条件
                dp[1][i]=1;
        }
        for(i=2;i<=m;i++)
        {
            for(j=0;j<kk;j++)
            {
                if(judge(state[j],cur[i]))continue;   //判断当前状态是否能放牧。
                for(k=0;k<kk;k++)
                {
                    if(judge(state[j],state[k]))continue;          
                    if(judge(cur[i-1],state[k]))continue;           //剪枝。
                    dp[i][j]+=dp[i-1][k];
                }
            }
        }
        ll ans=0;
        for(i=0;i<kk;i++)
            ans=(ans+dp[m][i])%mod;
        printf("%I64d\n",ans);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值