题目链接:
http://poj.org/problem?id=3254
题目大意:
给m*n的玉米地,里面可以放牧,1的位置可以放牧,0的位置不行。相邻的位置不能放牧。问一共有多少种放牧的方法。
范围:
n,m<=12。
思路:
状压dp。
可以为每一个行记录一个状态dp[i][state],表示在第i行的状态state是否满足。
所以在当前的第i行,我们可以通过判断各个状态是否与前一行的状态是否冲突,从而得到是否有新的情况。
那么我们就可以得到状态转移方程:dp[i][j]=∑dp[i-1][k]。
代码:
#include<stdio.h>
#include<string.h>
#define ll __int64
#define mod 100000000
int dp[20][2000],cur[20],state[2000];
int n,m,kk;
bool ok(int x)
{
return x&(x<<1);
}
void init()
{
for(int i=0;i<(1<<n);i++)
{
if(!ok(i))state[kk++]=i; //先筛选出所有放牧不相邻的状态。
}
}
bool judge(int x,int y)
{
return x&y;
}
int main()
{
int i,j,k,num;
while(~scanf("%d%d",&m,&n))
{
k=0;
init();
memset(dp,0,sizeof(dp));
for(i=1;i<=m;i++)
for(j=1;j<=n;j++)
{
scanf("%d",&num);
if(num==0)
cur[i]+=1<<(n-j); //判断当前行初始状态下能否放牧的情况
}
for(i=0;i<kk;i++)
{
if(!judge(state[i],cur[1])) //边界条件
dp[1][i]=1;
}
for(i=2;i<=m;i++)
{
for(j=0;j<kk;j++)
{
if(judge(state[j],cur[i]))continue; //判断当前状态是否能放牧。
for(k=0;k<kk;k++)
{
if(judge(state[j],state[k]))continue;
if(judge(cur[i-1],state[k]))continue; //剪枝。
dp[i][j]+=dp[i-1][k];
}
}
}
ll ans=0;
for(i=0;i<kk;i++)
ans=(ans+dp[m][i])%mod;
printf("%I64d\n",ans);
}
}