这个题目里,把每个柱子各自构成的矩形面积找出来,再计算最大的即可。
如果遍历每个柱子,分别左右查找其左右边界,不是最优方法。比如每个柱子高度都一样。
观察可以发现,如果右边的柱子高度小于等于左边的柱子,那么左边的柱子就可以退出舞台了(折叠),一个比较好理解的方式是每个柱子用一个存储空间去保存被其折叠的柱子数量,其面积为两个柱子间的所有柱子数量以及折叠的数量和*高度,
一个很巧妙的地方是,这个数量和,其实就是编号的距离,这里有点绕,
本质是累加计算转换为了减法计算,比如,2累计++ 7次到9,直接用9-2 计算就可以了。
| ||
|
| |
|
|
|
|
|
|
|
|
|
| ||
|
| |
|
|
|
|
|
|
|
| 1 |
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
示例 1:
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/largest-rectangle-in-histogram
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。