题目如下:
参考解法是动态规划,但是有些不好理解。
这里从更常规的方式去处理,转换成一个单向层次图问题来看,这里我们抽象出一个盖章问题:有M个部门,每个部门人员有不同的级别,都可以按部门盖章,一个部门的人盖章后,把文件转给下一个部门级别比自己低的人再盖章,现在有个文件需要每个部门盖章,从第一个部门开始,求有多少种盖章方式。
以下图为例,我们找出匹配位置后,当前节点的可选下一个节点的高度应该低于当前节点,
这样我们来设置一个场区值来标识到下一个节点的方案,节点根据自身所处的场区值就是到节点自身的路径方案数。
两个字符串匹配的区域即为节点,涂色标记出来了
场区值是可行方案的累计,每个格子的场区值f 是其上一列中有效对象f的累计和,
最终结果为最后一列中匹配的场区值的和,即1+4 = 5
进一步优化,高度太低而不足以到达终点的节点直接忽略。如下图中的黑色区域。
参考code
int numDistinct(string s, string t) {
int len1 = s.length();
int len2 = t.length();
if (len2 > len1) return 0;
//
vector<vector<long>> dp(len1, vector<long>(len2+1, 0));
//init data
for (int i = 0; i < len1; i++) {
if (s[i] == t[0]) {
dp[i][1] = 1;
}
}
int b = -1;//begin pos
for (int i = 1; i < len2; i++) {
long f = 0;//field
int j = b+1;
//get the start pos
while (s[j] != t[i-1]) {
j++;
//no one match
if (j >= len1) {
return 0;
}
}
b = j;
for (int j = b; j < len1; j++) {
//
if (len1-j < len2-i) {
break;
}
dp[j][i+1] = f;
if (s[j] == t[i-1]) {
f += dp[j][i];
}
}
}
int ans = 0;
if (b < 0) b = 0;
for (int i = b; i < len1; i++) {
if (s[i] == t[len2-1]) {
ans += dp[i][len2];
}
}
return ans;
}