算法练习-《115.不同的子序列》

题目如下:

力扣

参考解法是动态规划,但是有些不好理解。

这里从更常规的方式去处理,转换成一个单向层次图问题来看,这里我们抽象出一个盖章问题:有M个部门,每个部门人员有不同的级别,都可以按部门盖章,一个部门的人盖章后,把文件转给下一个部门级别比自己低的人再盖章,现在有个文件需要每个部门盖章,从第一个部门开始,求有多少种盖章方式。

以下图为例,我们找出匹配位置后,当前节点的可选下一个节点的高度应该低于当前节点,

这样我们来设置一个场区值来标识到下一个节点的方案,节点根据自身所处的场区值就是到节点自身的路径方案数。

两个字符串匹配的区域即为节点,涂色标记出来了

场区值是可行方案的累计,每个格子的场区值f 是其上一列中有效对象f的累计和,

最终结果为最后一列中匹配的场区值的和,即1+4 = 5

进一步优化,高度太低而不足以到达终点的节点直接忽略。如下图中的黑色区域。

参考code

    int numDistinct(string s, string t) {
        int len1 = s.length();
        int len2 = t.length();
        if (len2 > len1) return 0;

        //
        vector<vector<long>> dp(len1, vector<long>(len2+1, 0));
        //init data
        for (int i = 0; i < len1; i++) {
			if (s[i] == t[0]) {
				dp[i][1] = 1;
			}
        }

        int b = -1;//begin pos
        for (int i = 1; i < len2; i++) {
            long f = 0;//field
            int j = b+1;
            //get the start pos
            while (s[j] != t[i-1]) {
                j++;
                //no one match
				if (j >= len1) {
					return 0;
				}
            }
            b = j;
            
            for (int j = b; j < len1; j++) { 
                //
                if (len1-j < len2-i) {
                    break;
                }
				dp[j][i+1] = f;
				if (s[j] == t[i-1]) {
					f += dp[j][i];
				}
            }
        }

        int ans = 0;
        if (b < 0) b = 0;
        for (int i = b; i < len1; i++) {
            if (s[i] == t[len2-1]) {
                ans += dp[i][len2];
            }
        }

        return ans;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值