Floyd-Warshall

 

  • 用来算多源间最短距离和路径。
  • 时间复杂度 O(n^3)
  • 空间复杂度 O(n^2)
  • 稠密图效果最佳,边权可正可负
#include <bits/stdc++.h>

typedef long long LL;
const int MAXN = 100;
const int INF = 0x3f3f3f3f;
using namespace std;

int path[MAXN + 3][MAXN + 3], dist[MAXN + 3][MAXN + 3]; //path 储存路径; dist 存储最短距离

void floyd(int n, int dist[][MAXN + 3]) {
    for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) dist[i][j] = dist[i][j], path[i][j] = j;  //初始化
    for(int k = 1; k <= n; k++) {   //尝试经过 k 个点对每对顶点之间的距离进行更新
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= n; j++) {
                if(dist[i][k] != INF && dist[k][j] != INF && dist[i][k] + dist[k][j] < dist[i][j]) {
                    dist[i][j] = dist[i][k] + dist[k][j];//存距离 
                    path[i][j] = path[i][k];//存路径 
                }
            }
        }
    }
}

int pfpath(int u, int v) { //打印最短路径
    while(u != v) {
        cout << u  << " ";
        u = path[u][v];
    }
    cout << u << endl;
}

int main() {
    int n, m;
    while(cin >> n >> m){ // n 个点,  m 条边
        for(int i = 0; i <= n; i++) for(int j = -1; j <= n; j++){
            dist[i][j] = (i == j ? 0 : INF);
        }
        for(int i = 0; i < m; i++) {
            int u, v, w; cin >> u >> v >> w;
            dist[u][v]=w;  //无向图
            //dist[u][v] = dist[v][u] = w;  //无向图
        }
        floyd(n, dist);
        cout<<dist[4][3]<<endl; // 4到3的最短距离 
        pfpath(4,3);//4到3的最短路径 
    }
    return 0;
}

输入

//点数,边数

//a点,b点,ab距离

4 8
1 2 2
1 3 6
1 4 4
2 3 3
3 1 7
3 4 1
4 1 5
4 3 12

输出

//4到3的最短距离和路径

10
4 1 2 3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我爱吃狮子头

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值