题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874
畅通工程续
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 58224 Accepted Submission(s): 21883
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
也是道迪杰斯特拉算法模板题,但测试数据有点坑。。。同一对点可能有不同的距离,结果我一直WA了好久。。。
比如可能会有这样的数据:
3 4
0 1 2
0 1 999
1 2 3
0 2 9999
0 2
0,1的距离应该是2而非999
代码如下
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<string.h>
using namespace std;
const int NNN = 9999999999;
int road[4000][4000];
int dis[300];
int vis[300];
int N, M;
int d[300];
struct Node
{
int num;
char ch;
}node[6000];
void DIS(int x)
{
int i;
int j;
int ans;
int v;
ans = NNN;
dis[x] = 0;
vis[x] = 1;
for (i = 0; i < N; i++)
{
dis[i] = road[x][i];
}
for (j = 0; j < N + 7; j++)
{
for (i = 0; i < N; i++)
{
if (dis[i] < ans && !vis[i])
{
ans = dis[i];
v = i;
}
}
vis[v] = 1;
ans = NNN;
for (i = 0; i < N; i++)
{
if (dis[v] + road[v][i] < dis[i])
{
dis[i] = dis[v] + road[v][i];
d[i] = v;
}
}
}
}
void print(int n)
{
if (d[n] == n)
{
cout << node[n].ch;
return;
}
print(d[n]);
cout << " " << node[n].ch;
return;
}
int main()
{
char ch1, ch2;
int i, j;
int a, b;
int x, y;
while (cin >> N)
{
a = b = x = y = 0;
memset(dis, NNN, sizeof(dis));
memset(vis, 0, sizeof(vis));
for (i = 0; i < 250; i++)
for (j = 0; j < 250; j++)
{
if (i != j)
road[i][j] = NNN;
else
road[i][j] = 0;
}
cin >> M;
if (N == 0 && M == 0)
break;
for (i = 0; i < N; i++)
{
node[i].num = i;
}
for (i = 0; i < M; i++)
{
cin >> a;
cin >> b;
cin >> road[a][b];
road[b][a] = min(road[a][b], road[b][a]);
road[a][b] = road[b][a];
}
cin >> x >> y;
for (j = 0; j < N; j++)
{
d[j] = x;
}
DIS(x);
if (dis[y] < NNN)
cout << dis[y] << endl;
else
cout << "-1\n";
// print(y);
// cout << endl;
}
return 0;
}