hdu 1874 畅通工程续

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874

畅通工程续

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 58224    Accepted Submission(s): 21883


Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 

Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 

Sample Input
   
   
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
 

Sample Output
   
   
2 -1

也是道迪杰斯特拉算法模板题,但测试数据有点坑。。。同一对点可能有不同的距离,结果我一直WA了好久。。。
比如可能会有这样的数据:
3 4
0 1 2
0 1 999
1 2 3
0 2 9999
0 2

0,1的距离应该是2而非999


代码如下
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<string.h>

using namespace std;

const int NNN = 9999999999;

int road[4000][4000];
int dis[300];
int vis[300];
int N, M;
int d[300];

struct Node
{
	int num;
	char ch;
}node[6000];

void DIS(int x)
{
	int i;
	int j;
	int ans;
	int v;
	ans = NNN;
	dis[x] = 0;
	vis[x] = 1;
	for (i = 0; i < N; i++)
	{
		dis[i] = road[x][i];
	}
	for (j = 0; j < N + 7; j++)
	{
		for (i = 0; i < N; i++)
		{
			if (dis[i] < ans && !vis[i])
			{
				ans = dis[i];
				v = i;

			}

		}
		vis[v] = 1;
		ans = NNN;
		for (i = 0; i < N; i++)
		{
			if (dis[v] + road[v][i] < dis[i])
			{
				dis[i] = dis[v] + road[v][i];
				d[i] = v;
			}
		}
	}
}

void print(int n)
{
	if (d[n] == n)
	{
		cout << node[n].ch;
		return;
	}
	print(d[n]);
	cout << " " << node[n].ch;
	return;
}

int main()
{
	char ch1, ch2;
	int i, j;
	int a, b;
	int x, y;
	while (cin >> N)
	{
		a = b = x = y = 0;
		memset(dis, NNN, sizeof(dis));
		memset(vis, 0, sizeof(vis));
		for (i = 0; i < 250; i++)
			for (j = 0; j < 250; j++)
			{
				if (i != j)
					road[i][j] = NNN;
				else
					road[i][j] = 0;
			}

		cin >> M;
		if (N == 0 && M == 0)
			break;
		for (i = 0; i < N; i++)
		{
			node[i].num = i;
		}
		for (i = 0; i < M; i++)
		{

			cin >> a;
			cin >> b;
			cin >> road[a][b];
			road[b][a] = min(road[a][b], road[b][a]);
			road[a][b] = road[b][a];
		}

		cin >> x >> y;
		for (j = 0; j < N; j++)
		{
			d[j] = x;
		}
		DIS(x);
		if (dis[y] < NNN)
			cout << dis[y] << endl;
		else
			cout << "-1\n";
//		print(y);
//		cout << endl;

	}


	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值