摘要:
1.算法概述
2.算法推导
3.算法特性及优缺点
4.注意事项
5.实现和具体例子
6.适用场合
内容:
1.算法概述
k-means算法是一种得到最广泛使用的聚类算法。 它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点。
k-means 计算过程:
(1)随机选择k个类簇的中心
(2)计算每一个样本点到所有类簇中心的距离,选择最小距离作为该样本的类簇
(3)重新计算所有类簇的中心坐标,直到达到某种停止条件(迭代次数/簇中心收敛/最小平方误差)
期望最大化(Expectation Maximization)是在含有隐变量(latent variable)的模型下计算最大似然的一种算法
其中Z是隐变量,theta是待定参数;E-step是固定参数theta,求Z的期望;M-step是theta的极大似然估计
扩展:k均值的其他变种(二分k均值,kmeans++,mini-batch kmeans),层次聚类,密度聚类(DBscan,密度最大值聚类),吸引子传播算法(AP),谱聚类,标签传递算法(LPA)
扩展:聚类的衡量指标:均一性,完整性,V-measure,轮廓系数
2.算法推导
2.1 从kmeans目标函数/损失函数角度解释其收敛性:
从损失函数角度讲,kmeans和线性回归都是服从高斯分布的。从平方距离(L2范数球)上讲,k均值适合处理类圆形数据。
以上证明k均值聚类中心的梯度损失方向就是其类簇内的均值,从而从梯度下降算法/凸优化上解释了kmeans是收敛的。
2.2 使用EM算法推导K-means:
k-means算法是高斯混合聚类在混合成分方差相等,且每个样本仅指派一个混合成分时候的特例。k-means中每个样本所属的类就可以看成是一个隐变量,在E步中,我们固定每个类的中心,通过对每一个样本选择最近的类优化目标函数,在M步,重新更新每个类的中心点,该步骤可以通过对目标函数求导实现,最终可得新的类中心就是类中样本的均值。
深入:EM的收敛性证明
2.3 EM算法的理论基础
极大似然估计
Jensen不等式
2.4 EM算法的具体推导
先贴一个图,说明EM算法在做什么:
图中x是隐变量,不方便直接使用对数极大似然法求解参数thera,EM的策略就是先随便给一个条件概率p1(x|thera),然后找到一个l(thera)的下界函数r(x|thera),求r的最大值p2(x|thera),重复该过程知道重复到局部最大值。
关于EM中E-step和M-step可以查阅这篇文章:(EM算法)The EM Algorithm
3.算法特性及优缺点
特性:本算法确定的k个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。
优点:
(1)原理简单,实现容易;
(2)对于处理大数据集,这个算法是相对可伸缩和高效的
(3)当簇近似为高斯分布时,它的效果较好
缺点:
(1)在簇的平均值可被定义的情况下才能使用,可能不适用某些应用
(2)初始聚类中心的选择比较敏感,可能只能收敛到局部最优解(改进:选取距离尽可能远的点作为初始聚类 实现kmeans++)
(3)必须事先确定K的个数 (根据什么指标确定K)
(4)算法复杂度高O(nkt)
(5)不能发现非凸形状的簇,或大小差别很大的簇
(6)对噪声和孤立点数据敏感
4.注意事项
k-means初值的选择:k-means是初值敏感的,可以通过根据到簇中心距离,给样本点不同的随机概率,从而避免初值敏感问题,kmeans++即此算法的实现
k值的选择:业务上有具体的分类数最好,如果没有可以采用机器学习中的一些指标,比如损失函数最小,根据层次分类找到比较好的k值,聚类的轮廓系数等等。
对不同的数据分布选择不同的
归一化:基于距离的算法都需要进行无量纲化,防止样本在某些维度上过大导致距离计算失效
后处理:具有最大SSE值的簇划分为两个簇,具体实现只要将属于最大簇的数据点用K-均值聚类,设定簇数k=2即可。
为了保证簇总数不变,可以合并最近的质心,或者合并两个使得SSE值增幅最小的质心。
5.实现和具体例子
《机器学习实战》中的k-mean和二分k-means以及基于地点坐标的聚类
spark mllib的kmeans实现;spark mllib的二分k-means(BisectingKMeans
)--有时间研究下
互联网防刷(反作弊)-- 离群值检测
6.适用场合
支持大规模数据
特征维度
是否有 Online 算法:有,spark mllib的流式k均值
特征处理:支持数值型数据,类别型类型需要进行0-1编码