POJ 2914 Minimum Cut 最小割

     最小割Stoer_Wagner算法,网上到处都有这个算法的步骤,实现起来也比较简单。

刚刚才理解最小割就是最大流,之所以不用最大流算法,是因为最大流算法有确定的源点和汇点,但是求最小割没有指明源点和汇点;

如果枚举每个源点和汇点加上最大流的算法时间复杂度太高O(n^4),用这个算法时间复杂度在O(n^3)。给个链接介绍给大家:http://www.cnblogs.com/ylfdrib/archive/2010/08/17/1801784.html

代码:

#include<iostream>
#include<string.h>
#define maxn 505
#define INF 0x7fffffff
using namespace std;
int map[maxn][maxn],dist[maxn];
int n,m,mimcut,S,T;
bool educed[maxn],vis[maxn];
void Prim()  //最大生成树 
{
     int i,j,pt,mx;
     
     memset(dist,0,sizeof(dist));
     memset(vis,false,sizeof(vis));
     
     S=T=-1;
     
     for( i=0;i<n;i++){
          mx=-1;
          
          for( j=0;j<n;j++)
               if( !vis[j]&&!educed[j]&&dist[j]>mx)
                   pt=j, mx=dist[j];
               
          if(T==pt) return;
          S=T, T=pt;         //最后两个扩展的顶点。
          vis[T]=true; 
          mimcut=mx;
          
          for( j=0;j<n;j++)
               if( !educed[j]&&!vis[j])
                   dist[j]+=map[T][j];
     }
} 
int Stoer_Wagner()
{
    memset(educed,false,sizeof(educed));
    int ans=INF,i,j;
    for( i=1;i<n;i++){
         Prim();
         if( mimcut<ans) ans=mimcut;
         educed[T]=true;   //缩点,将最后扩展的两个点缩成一点。 
         for( j=0;j<n;j++){
              if( !educed[j]){
                  map[S][j]+=map[T][j];
                  map[j][S]+=map[j][T];
              }
         }
    }
    return ans;
}
int main()
{
    int a,b,c;
    while( scanf("%d%d",&n,&m)!=EOF){
           memset(map,0,sizeof(map));
           while( m--){
                  scanf("%d%d%d",&a,&b,&c);
                  map[a][b]+=c;
                  map[b][a]+=c;
           }
           printf("%d\n",Stoer_Wagner());
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值