Dify安装与使用指南:详细步骤教程(附教程)

Dify是一个开源的LLM应用开发平台,今天咱们详细介绍下Dify的安装步骤和使用场景。

Dify下载地址

Dify的官方GitHub仓库提供了源代码的下载,您可以通过以下链接访问并下载Dify:

Dify GitHub仓库

安装依赖

Docker环境配置

在安装Dify之前,您需要确保您的计算机上安装了Docker环境。以下是配置Docker镜像源的步骤,以提高拉取镜像的速度:

  1. 打开Docker Desktop,进入Settings中的Docker Engine。
  2. 在右方的json结构中,加入以下镜像源列表:
"registry-mirrors": [
    "https://registry.docker-cn.com",
    "https://docker.mirrors.ustc.edu.cn",
    "http://hub-mirror.c.163.com",
    "https://cr.console.aliyun.com/"
]

点击“Apply & restart”保存设置并重启Docker服务。

安装Python依赖

Dify使用Python语言开发,因此您需要安装Python环境以及相关的依赖包。以下是安装依赖的步骤:

  1. 安装Python 3.12环境(推荐使用pyenv进行版本管理)。
  2. 使用Poetry管理Python依赖。首先,您需要安装Poetry:
curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python -
  1. 通过Poetry安装Dify的依赖。在Dify项目的根目录下执行以下命令:
poetry env use 3.12
poetry shell
poetry install

如果在执行poetry install时遇到依赖下载缓慢的问题,可以尝试禁用keyring:

export PYTHON_KEYRING_BACKEND=keyring.backends.null.Keyring

后端API部署

  1. 从GitHub克隆Dify源代码到本地:
git clone https://github.com/langgenius/dify.git
  1. 启动DockerCompose堆栈,后端需要一些中间件,包括PostgreSQL、Redis和Weaviate,可以使用以下命令一起启动:
cd ../docker
cp middleware.env.example middleware.env
docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
  1. 配置API环境:
cd ../api
cp .env.example .env
sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
  1. 运行数据库迁移,以确保数据库是最新的:
poetry run python -m flask db upgrade

前端页面部署

  1. 安装Node.js v18.x LTS和NPM版本8.x.x或Yarn。
  2. 配置环境变量。在当前目录下创建文件.env.local,并复制.env.example中的内容。根据需求修改这些环境变量的值:
# For production release, change this to PRODUCTION
NEXT_PUBLIC_DEPLOY_ENV=DEVELOPMENT
# The deployment edition, SELF_HOSTED
NEXT_PUBLIC_EDITION=SELF_HOSTED
# The base URL of console application, refers to the Console base URL of WEB service if console domain is different from api or web app domain.
NEXT_PUBLIC_API_PREFIX=http://localhost:5001/console/api
# The URL for Web APP, refers to the Web App base URL of WEB service if web app domain is different from console or api domain.
NEXT_PUBLIC_PUBLIC_API_PREFIX=http://localhost:5001/api
  1. 启动Web服务:
npm run start
# or
yarn start
# or
pnpm start

正常启动后,访问http://127.0.0.1:3000即可使用本地部署的Dify。

Dify提供了一个强大的平台,让您能够快速构建和部署生成式AI应用。希望这篇指南能帮助您更好地了解和使用Dify。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

内容概要:本文档是关于Dify应用开发平台的部署教程Dify是一个集成了后端即服务和LLMOps概念的开源大语言模型应用开发平台。它帮助使用者快速构建AI应用程序,特别是针对那些想要介入AI领域但不具备技术背景的人士提供了便利的操作环境。文章详细阐述了从环境准备到最后验证安装完成的一系列步骤,包括创建必要文件夹、通过命令行克隆GitHub代码库,正确复制配置模板以设置环境变量以及运用Docker Compose工具来启动相关服务。当一切顺利执行完毕时,将得到一个完整的安装状态,并可以通过浏览器访问指定页面进行初始化设置以启用系统。 适合人群:希望涉足人工智能领域的初学者和技术爱好者,特别是不熟悉传统开发流程但仍希望通过简单方式建立自定义化AI应用程序的个体或团队。 使用场景及目标:①对于没有深厚技术背景却渴望尝试开发AI项目的用户而言,按照本教程操作能够极大降低入门门槛,加速创意落地过程;②对于拥有一定技术水平的专业人士来说,则提供了一个轻量级而高效的平台用于实验不同的AI概念应用场景,并促进了协作开发的可能性。 阅读建议:鉴于本指南涉及到具体的软件安装路径和技术术语解释,建议读者按照文中提供的具体指引逐一操作,如有疑问及时查阅官方文档或者其他补充材料,并保持良好的网络连接以便顺利完成各环节任务,同时注意记录重要配置参数方便日后维护管理。
<think>好的,我现在需要帮用户查找关于Dify教程使用指南。首先,用户提到想找相关教程,所以我要先回顾已有的引用内容。根据用户提供的引用,有三个相关资源: 1. 引用[1]是Dify入门指南,链接到GitHub的CONTRIBUTING.md文件。这应该包含基本的安装和配置步骤,可能适合新用户。 2. 引用[2]提到Dify使用教程3,特别是创建工作流的提示词。这部分可能涉及如何使用Diy的高级功能,比如自定义工具和工作流程设计。 3. 引用[3]提供了本地部署指南,包括克隆代码库的指令。这对于想要在自己环境部署Dify的用户很有帮助。 接下来,我需要将这些信息组织成用户容易理解的步骤。首先,用户可能需要从入门开始,所以应该先推荐引用[1]。然后,创建工作流的教程(引用[2])可以作为进阶内容。最后,本地部署指南(引用[3])适合有特定需求的用户。 需要注意的是,用户可能不知道这些资源的具体内容,所以需要简要说明每个教程的重点。同时,避免直接提到引用的来源,而是自然地融入回答中。另外,用户的问题是关于教程使用指南,所以不需要深入技术细节,而是提供清晰的指引和链接。 现在要检查是否有遗漏的信息。比如,是否有其他教程或社区资源,但根据提供的引用,只有这三个。因此,回答应围绕这三个部分展开,确保用户能按步骤找到所需资料。同时,生成的相关问题需要覆盖用户可能进一步询问的方向,比如如何自定义工具或部署的具体步骤。 最后,确保回答结构清晰,分点列出,并上相关链接。这样用户能快速找到所需资源,解决问题。</think>以下是关于Dify教程使用指南的整理: ### 一、Dify入门基础 1. **快速开始** Dify提供了详细的入门指南,涵盖环境配置、服务启动和基础功能操作。建议从GitHub仓库的`CONTRIBUTING.md`文件开始,包含代码贡献规范和基础操作指引[^1]。 - 文件路径:`dify/CONTRIBUTING.md` - 内容要点:开发环境搭建、API调用示例、工具集成方法 2. **核心功能实践** 通过创建工作流学习Dify的核心能力,例如: ```python # 示例:创建工作流的基础模板 def create_workflow(steps): return {"status": "active", "steps": steps} ``` ### 二、进阶应用教程 1. **自定义工具开发** 引用[^2]中提供的提示词模板可帮助构建智能体: ```xml <context> {{#context#}} <!-- 动态注入知识库 --> </context> ``` - 支持多语言响应 - 支持模糊查询的容错机制 2. **本地化部署指南** 通过克隆仓库实现私有化部署: ```bash git clone https://github.com/langgenius/dify.git cd dify && docker-compose up -d ``` 部署后可通过`localhost:8080`访问控制台[^3]。 ### 三、资源导航 | 资源类型 | 链接地址 | 适用场景 | |----------------|---------------------------------------------|------------------------| | 官方文档 | [CONTRIBUTING.md](https://github.com/...) | 开发环境配置 | | 视频教程 | B站官方频道 | 可视化操作演示 | | 社区问答 | GitHub Issues | 故障排查反馈 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值