【人工智能/机器学习/机器人】数学基础-学习笔记

极限

数列

按照一定次数排列的一列数: u 1 , u 2 , u 3 , ⋅ ⋅ ⋅ , u n , ⋅ ⋅ ⋅ u_1,u_2,u_3,···,u_n,··· u1,u2,u3,⋅⋅⋅,un,⋅⋅⋅,其中 u n u_n un叫做通项

对于数列 { u n } \{u_n\} {un},如果当 n n n无限大时,其通项无限接近于一个参数 A A A
则称该数列以 A A A为极限或称数列收敛于 A A A,否则称数列为发散
lim ⁡ n → ∞ u n = A \lim\limits_ {n \to \infty}u_n=A nlimun=A ,或 u n → A ( n → ∞ ) u_n \to A (n \to \infty) unA(n)
lim ⁡ n → ∞ 1 3 n = 0 \lim\limits_{n \to \infty}{\frac 1{3^n}}=0 nlim3n1=0 lim ⁡ n → ∞ n n + 1 = 1 \lim\limits_{n \to \infty}{ \frac n{n+1}}=1 nlimn+1n=1 lim ⁡ n → ∞ 2 n \lim\limits_{n \to \infty}2^n nlim2n不存在

极限

符号表示:
x → ∞ x \to \infty x表示“当 ∣ x ∣ |x| x无限增大时”;
x → + ∞ x \to +\infty x+表示“当 x x x无限增大时”;
x → − ∞ x \to -\infty x表示“当 x x x无限减少时”;
x → x 0 x \to x_0 xx0表示“当 x x x x 0 x_0 x0的左右两侧无限接近于 x 0 x_0 x0时”;
x → x 0 + x \to x^+_0 xx0+表示“当 x x x x 0 x_0 x0的右侧无限接近于 x 0 x_0 x0时”;
x → x 0 − x \to x^-_0 xx0表示“当 x x x x 0 x_0 x0的左侧无限接近于 x 0 x_0 x0时”;

在这里插入图片描述

  • 函数在 x 0 x_0 x0的邻域内有定义, lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}f(x)=A xx0limf(x)=A,或 f ( x ) → A ( x → x 0 ) f(x) \to A(x \to x_0) f(x)A(xx0)
    lim ⁡ x → 1 x 2 − 1 x − 1 = lim ⁡ x → 1 ( x − 1 ) ( x + 1 ) x − 1 = 2 \lim\limits_{x \to 1}{\frac {x^2-1}{x-1}}=\lim\limits_{x \to 1}{\frac {(x-1)(x+1)}{x-1}}=2 x1limx1x21=x1limx1(x1)(x+1)=2
  • 左右极限:函数在左半邻域 ( x 0 − δ , x 0 ) (x_0-\delta,x_0) (x0δ,x0)或右半邻域 ( x 0 , x 0 + δ ) (x_0,x_0+\delta) (x0,x0+δ)内有定义
    lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x \to x^+_0}f(x)=A xx0+limf(x)=A,或 f ( x ) → A ( x → x 0 + ) f(x) \to A(x \to x^+_0) f(x)A(xx0+) f ( x 0 + 0 ) = A f(x_0+0)=A f(x0+0)=A
    lim ⁡ x → x 0 − f ( x ) = A \lim\limits_{x \to x^-_0}f(x)=A xx0limf(x)=A,或 f ( x ) → A ( x → x 0 − ) f(x) \to A(x \to x^-_0) f(x)A(xx0) f ( x 0 − 0 ) = A f(x_0-0)=A f(x00)=A



lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}f(x)=A xx0limf(x)=A的充要条件是 lim ⁡ x → x 0 − f ( x ) = lim ⁡ x 0 + f ( x ) = A \lim\limits_{x \to x^-_0}f(x)=\lim\limits_{x^+_0}f(x)=A xx0limf(x)=x0+limf(x)=A

例:

f ( x ) = { x − 1 x < 0 0 x = 0 x + 1 x > 0 f(x)=\left\{\begin{aligned}x-1 && x<0 \\ 0 && x=0 \\ x+1 && x>0 \end{aligned}\right. f(x)= x10x+1x<0x=0x>0


求:当 x → 0 x \to 0 x0 f ( x ) f(x) f(x) 的极限
解:
lim ⁡ x → 0 + f ( x ) = lim ⁡ x → 0 + ( x + 1 ) = 1 \lim\limits_{x \to 0^+}f(x)=\lim\limits_{x \to 0^+}(x+1)=1 x0+limf(x)=x0+lim(x+1)=1

lim ⁡ x → 0 − f ( x ) = lim ⁡ x → 0 − ( x − 1 ) = − 1 \lim\limits_{x \to 0^-}f(x)=\lim\limits_{x \to 0^-}(x-1)=-1 x0limf(x)=x0lim(x1)=1

左右极限存在但不相等

∴ lim ⁡ x → 0 f ( x ) \therefore \lim\limits_{x \to 0}f(x) x0limf(x) 不存在




无穷小

  • 无穷小:以零为极限

例:
lim ⁡ x → ∞ 1 x = 0 \lim\limits_{x \to \infty}{\frac 1x}=0 xlimx1=0,则 1 x \frac 1x x1 x → ∞ x \to \infty x时的无穷小

lim ⁡ x → 2 ( 3 x − 6 ) = 0 \lim\limits_{x \to 2}(3x-6)=0 x2lim(3x6)=0,则 3 x − 6 3x-6 3x6 x → 2 x \to 2 x2时的无穷小

  • 基本性质:
    1、有限个无穷小的代数和仍是无穷小     
    2、有限个无穷小的积仍是无穷小
    3、有界变量与无穷小的积仍是无穷小
    4、无限个无穷小之和不一定是无穷小

例:

lim ⁡ n → ∞ ( 1 n 2 + 2 n 2 + . . . + n n 2 ) \lim\limits_{n \to \infty}(\frac1{n^2}+\frac2{n^2}+...+\frac n{n^2}) nlim(n21+n22+...+n2n)

= lim ⁡ n → ∞ n ( n + 1 ) 2 n 2 =\lim\limits_{n \to \infty}{\frac {\frac {n(n+1)}2}{n^2}} =nlimn22n(n+1)

= lim ⁡ n → ∞ n + 1 2 n =\lim\limits_{n \to \infty}{\frac {n+1}{2n}} =nlim2nn+1
= 1 2 =\frac 12 =21


  • 无穷小的商不一定是无穷小
    例: lim ⁡ x → 0 x 2 x = 1 2 \lim\limits_{x \to 0}{\frac x{2x}}=\frac 12 x0lim2xx=21, lim ⁡ x → 0 x 2 2 x = 0 \lim\limits_{x \to 0}{\frac {x^2}{2x}}=0 x0lim2xx2=0, lim ⁡ x → 0 2 x x 2 = ∞ \lim\limits_{x \to 0}{\frac {2x}{x^2}}=\infty x0limx22x=

  • 极限与无穷小的关系: lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}f(x)=A xx0limf(x)=A的充要条件 f ( x ) = A + a ( x ) f(x)=A+a(x) f(x)=A+a(x),其中 a ( x ) a(x) a(x) x → x 0 x \to x_0 xx0时的无穷小

  • 无穷小的比较:
    α = α ( x ) , β = β ( x ) \alpha=\alpha(x),\beta=\beta(x) α=α(x),β=β(x)都是无穷小, lim ⁡ x → x 0 α ( x ) = 0 , lim ⁡ x → x 0 β ( x ) = 0 \lim\limits_{x \to x_0}\alpha(x)=0,\lim\limits_{x \to x_0}\beta(x)=0 xx0limα(x)=0,xx0limβ(x)=0

    如果 lim ⁡ x → x 0 β α = 0 \lim\limits_{x \to x_0}{\frac \beta\alpha}=0 xx0limαβ=0,则称 β \beta β是比 α \alpha α高阶无穷小

    如果 lim ⁡ x → x 0 β α = ∞ \lim\limits_{x \to x_0}{\frac \beta\alpha}=\infty xx0limαβ=,则称 β \beta β是比 α \alpha α低阶无穷小

    如果 lim ⁡ x → x 0 β α = 0 ≠ 0 \lim\limits_{x \to x_0}{\frac \beta\alpha}=0\neq0 xx0limαβ=0=0,则称 β \beta β是比 α \alpha α同阶无穷小


无穷大

  • 无穷大:并不是一个很大的数,是相对于变换过程来说

    lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x \to x_0}f(x)=\infty xx0limf(x)= f ( x ) → ∞ ( x → x 0 ) f(x) \to \infty(x \to x_0) f(x)(xx0)

  • 无穷小和无穷大的关系:在自变量的变换的同一过程中,如果 f ( x ) f(x) f(x)为无穷大,则 1 f ( x ) \frac 1{f(x)} f(x)1为无穷小

函数

奇偶性

  • 偶函数: f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x)     y轴对称
    f ( x ) = x 2 f(x)=x^2 f(x)=x2     f ( − x ) = ( − x ) 2 = x 2 = f ( x ) f(-x)=(-x)^2=x^2=f(x) f(x)=(x)2=x2=f(x)

  • 奇函数: f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x)  原点对称
    f ( x ) = x 3 f(x)=x^3 f(x)=x3     f ( − x ) = ( − x ) 3 = − x 3 = − f ( x ) f(-x)=(-x)^3=-x^3=-f(x) f(x)=(x)3=x3=f(x)

  • 周期性: f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)

  • 单调性:

在这里插入图片描述

连续性

函数的连续性

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域内有定义,如果当自变量的该变量 Δ x \Delta x Δx趋近于零时,相应函数的改变量 Δ y \Delta y Δy也趋近于零,则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处连续。

即: lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim\limits_{\Delta x \to 0}\Delta y=\lim\limits_{\Delta x \to 0}[f(x_0 + \Delta x) - f(x_0)]=0 Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0

在这里插入图片描述



函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处连续,需要满足的条件:

1.函数在该点处有定义

2.函数在该点处极限 lim ⁡ x → x 0 f ( x ) \lim\limits_{x \to x_0}f(x) xx0limf(x)存在

3.极限值等于函数值 f ( x 0 ) f(x_0) f(x0)

例:

求函数 f ( x ) = { x + 1 x ≤ 0 sin ⁡ x x x > 0 f(x)=\left\{\begin{aligned}x+1 && x \leq 0 \\ \frac {\sin x}x && x>0 \end{aligned}\right. f(x)= x+1xsinxx0x>0,在 x = 0 x=0 x=0处的连续性?

f ( 0 ) = 1 f(0)=1 f(0)=1

lim ⁡ x → 0 − f ( x ) = lim ⁡ x → 0 − ( x + 1 ) = 1 \lim\limits_{x \to 0^-}f(x)=\lim\limits_{x \to 0^-}(x+1)=1 x0limf(x)=x0lim(x+1)=1

lim ⁡ x → 0 + f ( x ) = lim ⁡ x → 0 + sin ⁡ x x = 1 \lim\limits_{x \to 0^+}f(x)=\lim\limits_{x \to 0^+}\frac {\sin x}x=1 x0+limf(x)=x0+limxsinx=1

∴ lim ⁡ x → 0 f ( x ) = 1 \therefore \lim\limits_{x \to 0}f(x)=1 x0limf(x)=1

∴ lim ⁡ x → 0 f ( x ) = f ( 0 ) = 1 \therefore \lim\limits_{x \to 0}f(x)=f(0)=1 x0limf(x)=f(0)=1

∴ \therefore 连续


函数的间断点

函数 f ( x ) f(x) f(x)在点 x = x 0 x=x_0 x=x0处不连续,则称其为函数的间断点。


3种情况为间断点:

1.函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处没有定义

2.极限 lim ⁡ x → x 0 f ( x ) \lim\limits_{x \to x_0}f(x) xx0limf(x)不存在

3.满足前两点,但是 lim ⁡ x → x 0 f ( x ) ≠ f ( x ) \lim\limits_{x \to x_0}f(x) \neq f(x) xx0limf(x)=f(x)


x → x 0 x \to x_0 xx0时, f ( x ) f(x) f(x)的左右极限存在,则称 x 0 x_0 x0 f ( x ) f(x) f(x)的第一类间断点,否则为第二类间断点

跳跃间断点: lim ⁡ x → 0 − f ( x ) \lim\limits_{x \to 0^-}f(x) x0limf(x) lim ⁡ x → 0 + f ( x ) \lim\limits_{x \to 0^+}f(x) x0+limf(x)均存在,但不相等

可去间断点: lim ⁡ x → x 0 f ( x ) \lim\limits_{x \to x_0}f(x) xx0limf(x)存在但不等于 f ( x 0 ) f(x_0) f(x0)



例:求函数 f ( x ) = x 2 − 1 x 2 − 3 x + 2 f(x)=\frac {x^2-1}{x^2 -3x + 2} f(x)=x23x+2x21的连续性?

函数 f ( x ) f(x) f(x)在点 x = 2 , x = 1 x=2,x=1 x=2,x=1处没有定义

lim ⁡ x → 1 − x 2 − 1 x 2 − 3 x + 2 = lim ⁡ x → 1 − ( x + 1 ) ( x − 1 ) ( x − 2 ) ( x − 1 ) = lim ⁡ x → 1 − x + 1 x − 2 = − 2 \lim\limits_{x \to 1^-}\frac {x^2-1}{x^2 -3x + 2}=\lim\limits_{x \to 1^-}\frac {(x+1)(x-1)}{(x-2)(x-1)}=\lim\limits_{x \to 1^-}\frac {x+1}{x-2}=-2 x1limx23x+2x21=x1lim(x2)(x1)(x+1)(x1)=x1limx2x+1=2

lim ⁡ x → 1 + x 2 − 1 x 2 − 3 x + 2 = lim ⁡ x → 1 + ( x + 1 ) ( x − 1 ) ( x − 2 ) ( x − 1 ) = lim ⁡ x → 1 + x + 1 x − 2 = − 2 \lim\limits_{x \to 1^+}\frac {x^2-1}{x^2 -3x + 2}=\lim\limits_{x \to 1^+}\frac {(x+1)(x-1)}{(x-2)(x-1)}=\lim\limits_{x \to 1^+}\frac {x+1}{x-2}=-2 x1+limx23x+2x21=x1+lim(x2)(x1)(x+1)(x1)=x1+limx2x+1=2

lim ⁡ x → 2 − x 2 − 1 x 2 − 3 x + 2 = lim ⁡ x → 2 − ( x + 1 ) ( x − 1 ) ( x − 2 ) ( x − 1 ) = lim ⁡ x → 2 − x + 1 x − 2 = − ∞ \lim\limits_{x \to 2^-}\frac {x^2-1}{x^2 -3x + 2}=\lim\limits_{x \to 2^-}\frac {(x+1)(x-1)}{(x-2)(x-1)}=\lim\limits_{x \to 2^-}\frac {x+1}{x-2}=-\infty x2limx23x+2x21=x2lim(x2)(x1)(x+1)(x1)=x2limx2x+1=

lim ⁡ x → 2 + x 2 − 1 x 2 − 3 x + 2 = lim ⁡ x → 2 + ( x + 1 ) ( x − 1 ) ( x − 2 ) ( x − 1 ) = lim ⁡ x → 2 + x + 1 x − 2 = ∞ \lim\limits_{x \to 2^+}\frac {x^2-1}{x^2 -3x + 2}=\lim\limits_{x \to 2^+}\frac {(x+1)(x-1)}{(x-2)(x-1)}=\lim\limits_{x \to 2^+}\frac {x+1}{x-2}=\infty x2+limx23x+2x21=x2+lim(x2)(x1)(x+1)(x1)=x2+limx2x+1=

∴ \therefore x = 1 x=1 x=1处是可去间断点,在 x = 2 x=2 x=2处是第二类间断点



导数

导数定义

  • 平均速度: ( 速度 ) v = s ( 路程 ) t ( 时间 ) (速度)v=\frac {s(路程)}{t(时间)} (速度)v=t(时间)s(路程),但是如何表示瞬时速度呢?

  • 瞬时经过路程: Δ s = s ( t 0 + Δ t ) − s ( t 0 ) \Delta s=s(t_0 + \Delta t) - s(t_0) Δs=s(t0+Δt)s(t0)

  • 这一小段的平均速度: v ‾ = Δ s Δ t = s ( t 0 + Δ t ) − s ( t 0 ) Δ t \overline v=\frac {\Delta s}{\Delta t}=\frac {s(t_0 + \Delta t)-s(t_0)}{\Delta t} v=ΔtΔs=Δts(t0+Δt)s(t0)

  • Δ t → 0 \Delta t \to 0 Δt0时也就是瞬时速度了: v ( t 0 ) = lim ⁡ Δ t → 0 v ‾ = lim ⁡ Δ t → 0 Δ s Δ t = lim ⁡ Δ t → 0 s ( t 0 + Δ t ) − s ( t 0 ) Δ t v(t_0)=\lim\limits_{\Delta t \to 0}\overline v=\lim\limits_{\Delta t \to 0}\frac {\Delta s}{\Delta t}=\lim\limits_{\Delta t \to 0}\frac {s(t_0 + \Delta t)-s(t_0)}{\Delta t} v(t0)=Δt0limv=Δt0limΔtΔs=Δt0limΔts(t0+Δt)s(t0)

  • 如果平均变化率的极限存在, lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim\limits_{\Delta x \to 0}\frac {\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac {f(x_0+\Delta x)-f(x_0)}{\Delta x} Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0),则称此极限为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数 f ′ ( x 0 ) f^{'}(x_0) f(x0), y ′ ∣ x = x 0 y^{'}|_{x=x_0} yx=x0, d y d x ∣ x = x 0 \frac {\mathrm{d} y}{\mathrm{d} x}|_{x=x_0} dxdyx=x0 d f ( x ) d x ∣ x = x 0 \frac {\mathrm{d} f(x)}{\mathrm{d} x}|_{x=x_0} dxdf(x)x=x0

导数公式:

在这里插入图片描述



导数交换律:

在这里插入图片描述




持续更新!!!!!

持续更新!!!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

布响哒公

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值