极限
数列
按照一定次数排列的一列数: u 1 , u 2 , u 3 , ⋅ ⋅ ⋅ , u n , ⋅ ⋅ ⋅ u_1,u_2,u_3,···,u_n,··· u1,u2,u3,⋅⋅⋅,un,⋅⋅⋅,其中 u n u_n un叫做通项
对于数列
{
u
n
}
\{u_n\}
{un},如果当
n
n
n无限大时,其通项无限接近于一个参数
A
A
A
则称该数列以
A
A
A为极限或称数列收敛于
A
A
A,否则称数列为发散
lim
n
→
∞
u
n
=
A
\lim\limits_ {n \to \infty}u_n=A
n→∞limun=A ,或
u
n
→
A
(
n
→
∞
)
u_n \to A (n \to \infty)
un→A(n→∞)
lim
n
→
∞
1
3
n
=
0
\lim\limits_{n \to \infty}{\frac 1{3^n}}=0
n→∞lim3n1=0,
lim
n
→
∞
n
n
+
1
=
1
\lim\limits_{n \to \infty}{ \frac n{n+1}}=1
n→∞limn+1n=1,
lim
n
→
∞
2
n
\lim\limits_{n \to \infty}2^n
n→∞lim2n不存在
极限
符号表示:
x
→
∞
x \to \infty
x→∞表示“当
∣
x
∣
|x|
∣x∣无限增大时”;
x
→
+
∞
x \to +\infty
x→+∞表示“当
x
x
x无限增大时”;
x
→
−
∞
x \to -\infty
x→−∞表示“当
x
x
x无限减少时”;
x
→
x
0
x \to x_0
x→x0表示“当
x
x
x从
x
0
x_0
x0的左右两侧无限接近于
x
0
x_0
x0时”;
x
→
x
0
+
x \to x^+_0
x→x0+表示“当
x
x
x从
x
0
x_0
x0的右侧无限接近于
x
0
x_0
x0时”;
x
→
x
0
−
x \to x^-_0
x→x0−表示“当
x
x
x从
x
0
x_0
x0的左侧无限接近于
x
0
x_0
x0时”;
- 函数在
x
0
x_0
x0的邻域内有定义,
lim
x
→
x
0
f
(
x
)
=
A
\lim\limits_{x \to x_0}f(x)=A
x→x0limf(x)=A,或
f
(
x
)
→
A
(
x
→
x
0
)
f(x) \to A(x \to x_0)
f(x)→A(x→x0)
lim x → 1 x 2 − 1 x − 1 = lim x → 1 ( x − 1 ) ( x + 1 ) x − 1 = 2 \lim\limits_{x \to 1}{\frac {x^2-1}{x-1}}=\lim\limits_{x \to 1}{\frac {(x-1)(x+1)}{x-1}}=2 x→1limx−1x2−1=x→1limx−1(x−1)(x+1)=2 - 左右极限:函数在左半邻域
(
x
0
−
δ
,
x
0
)
(x_0-\delta,x_0)
(x0−δ,x0)或右半邻域
(
x
0
,
x
0
+
δ
)
(x_0,x_0+\delta)
(x0,x0+δ)内有定义
lim x → x 0 + f ( x ) = A \lim\limits_{x \to x^+_0}f(x)=A x→x0+limf(x)=A,或 f ( x ) → A ( x → x 0 + ) f(x) \to A(x \to x^+_0) f(x)→A(x→x0+)或 f ( x 0 + 0 ) = A f(x_0+0)=A f(x0+0)=A
lim x → x 0 − f ( x ) = A \lim\limits_{x \to x^-_0}f(x)=A x→x0−limf(x)=A,或 f ( x ) → A ( x → x 0 − ) f(x) \to A(x \to x^-_0) f(x)→A(x→x0−)或 f ( x 0 − 0 ) = A f(x_0-0)=A f(x0−0)=A
lim x → x 0 f ( x ) = A \lim\limits_{x \to x_0}f(x)=A x→x0limf(x)=A的充要条件是 lim x → x 0 − f ( x ) = lim x 0 + f ( x ) = A \lim\limits_{x \to x^-_0}f(x)=\lim\limits_{x^+_0}f(x)=A x→x0−limf(x)=x0+limf(x)=A
例:
f ( x ) = { x − 1 x < 0 0 x = 0 x + 1 x > 0 f(x)=\left\{\begin{aligned}x-1 && x<0 \\ 0 && x=0 \\ x+1 && x>0 \end{aligned}\right. f(x)=⎩ ⎨ ⎧x−10x+1x<0x=0x>0
求:当
x
→
0
x \to 0
x→0时
f
(
x
)
f(x)
f(x) 的极限
解:
lim
x
→
0
+
f
(
x
)
=
lim
x
→
0
+
(
x
+
1
)
=
1
\lim\limits_{x \to 0^+}f(x)=\lim\limits_{x \to 0^+}(x+1)=1
x→0+limf(x)=x→0+lim(x+1)=1
lim x → 0 − f ( x ) = lim x → 0 − ( x − 1 ) = − 1 \lim\limits_{x \to 0^-}f(x)=\lim\limits_{x \to 0^-}(x-1)=-1 x→0−limf(x)=x→0−lim(x−1)=−1
左右极限存在但不相等
∴ lim x → 0 f ( x ) \therefore \lim\limits_{x \to 0}f(x) ∴x→0limf(x) 不存在
无穷小
- 无穷小:以零为极限
例:
lim
x
→
∞
1
x
=
0
\lim\limits_{x \to \infty}{\frac 1x}=0
x→∞limx1=0,则
1
x
\frac 1x
x1是
x
→
∞
x \to \infty
x→∞时的无穷小
lim x → 2 ( 3 x − 6 ) = 0 \lim\limits_{x \to 2}(3x-6)=0 x→2lim(3x−6)=0,则 3 x − 6 3x-6 3x−6是 x → 2 x \to 2 x→2时的无穷小
- 基本性质:
1、有限个无穷小的代数和仍是无穷小
2、有限个无穷小的积仍是无穷小
3、有界变量与无穷小的积仍是无穷小
4、无限个无穷小之和不一定是无穷小
例:
lim n → ∞ ( 1 n 2 + 2 n 2 + . . . + n n 2 ) \lim\limits_{n \to \infty}(\frac1{n^2}+\frac2{n^2}+...+\frac n{n^2}) n→∞lim(n21+n22+...+n2n)
= lim n → ∞ n ( n + 1 ) 2 n 2 =\lim\limits_{n \to \infty}{\frac {\frac {n(n+1)}2}{n^2}} =n→∞limn22n(n+1)
=
lim
n
→
∞
n
+
1
2
n
=\lim\limits_{n \to \infty}{\frac {n+1}{2n}}
=n→∞lim2nn+1
=
1
2
=\frac 12
=21
- 无穷小的商不一定是无穷小
例: lim x → 0 x 2 x = 1 2 \lim\limits_{x \to 0}{\frac x{2x}}=\frac 12 x→0lim2xx=21, lim x → 0 x 2 2 x = 0 \lim\limits_{x \to 0}{\frac {x^2}{2x}}=0 x→0lim2xx2=0, lim x → 0 2 x x 2 = ∞ \lim\limits_{x \to 0}{\frac {2x}{x^2}}=\infty x→0limx22x=∞
- 极限与无穷小的关系: lim x → x 0 f ( x ) = A \lim\limits_{x \to x_0}f(x)=A x→x0limf(x)=A的充要条件 f ( x ) = A + a ( x ) f(x)=A+a(x) f(x)=A+a(x),其中 a ( x ) a(x) a(x)是 x → x 0 x \to x_0 x→x0时的无穷小
-
无穷小的比较:
α = α ( x ) , β = β ( x ) \alpha=\alpha(x),\beta=\beta(x) α=α(x),β=β(x)都是无穷小, lim x → x 0 α ( x ) = 0 , lim x → x 0 β ( x ) = 0 \lim\limits_{x \to x_0}\alpha(x)=0,\lim\limits_{x \to x_0}\beta(x)=0 x→x0limα(x)=0,x→x0limβ(x)=0如果 lim x → x 0 β α = 0 \lim\limits_{x \to x_0}{\frac \beta\alpha}=0 x→x0limαβ=0,则称 β \beta β是比 α \alpha α高阶无穷小
如果 lim x → x 0 β α = ∞ \lim\limits_{x \to x_0}{\frac \beta\alpha}=\infty x→x0limαβ=∞,则称 β \beta β是比 α \alpha α低阶无穷小
如果 lim x → x 0 β α = 0 ≠ 0 \lim\limits_{x \to x_0}{\frac \beta\alpha}=0\neq0 x→x0limαβ=0=0,则称 β \beta β是比 α \alpha α同阶无穷小
无穷大
-
无穷大:并不是一个很大的数,是相对于变换过程来说
lim x → x 0 f ( x ) = ∞ \lim\limits_{x \to x_0}f(x)=\infty x→x0limf(x)=∞或 f ( x ) → ∞ ( x → x 0 ) f(x) \to \infty(x \to x_0) f(x)→∞(x→x0)
-
无穷小和无穷大的关系:在自变量的变换的同一过程中,如果 f ( x ) f(x) f(x)为无穷大,则 1 f ( x ) \frac 1{f(x)} f(x)1为无穷小
函数
奇偶性
-
偶函数: f ( − x ) = f ( x ) f(-x)=f(x) f(−x)=f(x) y轴对称
f ( x ) = x 2 f(x)=x^2 f(x)=x2 f ( − x ) = ( − x ) 2 = x 2 = f ( x ) f(-x)=(-x)^2=x^2=f(x) f(−x)=(−x)2=x2=f(x) -
奇函数: f ( − x ) = − f ( x ) f(-x)=-f(x) f(−x)=−f(x) 原点对称
f ( x ) = x 3 f(x)=x^3 f(x)=x3 f ( − x ) = ( − x ) 3 = − x 3 = − f ( x ) f(-x)=(-x)^3=-x^3=-f(x) f(−x)=(−x)3=−x3=−f(x) -
周期性: f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)
-
单调性:
连续性
函数的连续性
设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域内有定义,如果当自变量的该变量 Δ x \Delta x Δx趋近于零时,相应函数的改变量 Δ y \Delta y Δy也趋近于零,则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处连续。
即: lim Δ x → 0 Δ y = lim Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim\limits_{\Delta x \to 0}\Delta y=\lim\limits_{\Delta x \to 0}[f(x_0 + \Delta x) - f(x_0)]=0 Δx→0limΔy=Δx→0lim[f(x0+Δx)−f(x0)]=0
函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处连续,需要满足的条件:
1.函数在该点处有定义
2.函数在该点处极限 lim x → x 0 f ( x ) \lim\limits_{x \to x_0}f(x) x→x0limf(x)存在
3.极限值等于函数值 f ( x 0 ) f(x_0) f(x0)
例:
求函数 f ( x ) = { x + 1 x ≤ 0 sin x x x > 0 f(x)=\left\{\begin{aligned}x+1 && x \leq 0 \\ \frac {\sin x}x && x>0 \end{aligned}\right. f(x)=⎩ ⎨ ⎧x+1xsinxx≤0x>0,在 x = 0 x=0 x=0处的连续性?
f ( 0 ) = 1 f(0)=1 f(0)=1
lim x → 0 − f ( x ) = lim x → 0 − ( x + 1 ) = 1 \lim\limits_{x \to 0^-}f(x)=\lim\limits_{x \to 0^-}(x+1)=1 x→0−limf(x)=x→0−lim(x+1)=1
lim x → 0 + f ( x ) = lim x → 0 + sin x x = 1 \lim\limits_{x \to 0^+}f(x)=\lim\limits_{x \to 0^+}\frac {\sin x}x=1 x→0+limf(x)=x→0+limxsinx=1
∴ lim x → 0 f ( x ) = 1 \therefore \lim\limits_{x \to 0}f(x)=1 ∴x→0limf(x)=1
∴ lim x → 0 f ( x ) = f ( 0 ) = 1 \therefore \lim\limits_{x \to 0}f(x)=f(0)=1 ∴x→0limf(x)=f(0)=1
∴ \therefore ∴连续
函数的间断点
函数 f ( x ) f(x) f(x)在点 x = x 0 x=x_0 x=x0处不连续,则称其为函数的间断点。
3种情况为间断点:
1.函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处没有定义
2.极限 lim x → x 0 f ( x ) \lim\limits_{x \to x_0}f(x) x→x0limf(x)不存在
3.满足前两点,但是 lim x → x 0 f ( x ) ≠ f ( x ) \lim\limits_{x \to x_0}f(x) \neq f(x) x→x0limf(x)=f(x)
当 x → x 0 x \to x_0 x→x0时, f ( x ) f(x) f(x)的左右极限存在,则称 x 0 x_0 x0为 f ( x ) f(x) f(x)的第一类间断点,否则为第二类间断点
跳跃间断点: lim x → 0 − f ( x ) \lim\limits_{x \to 0^-}f(x) x→0−limf(x)与 lim x → 0 + f ( x ) \lim\limits_{x \to 0^+}f(x) x→0+limf(x)均存在,但不相等
可去间断点: lim x → x 0 f ( x ) \lim\limits_{x \to x_0}f(x) x→x0limf(x)存在但不等于 f ( x 0 ) f(x_0) f(x0)
例:求函数 f ( x ) = x 2 − 1 x 2 − 3 x + 2 f(x)=\frac {x^2-1}{x^2 -3x + 2} f(x)=x2−3x+2x2−1的连续性?
函数 f ( x ) f(x) f(x)在点 x = 2 , x = 1 x=2,x=1 x=2,x=1处没有定义
lim x → 1 − x 2 − 1 x 2 − 3 x + 2 = lim x → 1 − ( x + 1 ) ( x − 1 ) ( x − 2 ) ( x − 1 ) = lim x → 1 − x + 1 x − 2 = − 2 \lim\limits_{x \to 1^-}\frac {x^2-1}{x^2 -3x + 2}=\lim\limits_{x \to 1^-}\frac {(x+1)(x-1)}{(x-2)(x-1)}=\lim\limits_{x \to 1^-}\frac {x+1}{x-2}=-2 x→1−limx2−3x+2x2−1=x→1−lim(x−2)(x−1)(x+1)(x−1)=x→1−limx−2x+1=−2
lim x → 1 + x 2 − 1 x 2 − 3 x + 2 = lim x → 1 + ( x + 1 ) ( x − 1 ) ( x − 2 ) ( x − 1 ) = lim x → 1 + x + 1 x − 2 = − 2 \lim\limits_{x \to 1^+}\frac {x^2-1}{x^2 -3x + 2}=\lim\limits_{x \to 1^+}\frac {(x+1)(x-1)}{(x-2)(x-1)}=\lim\limits_{x \to 1^+}\frac {x+1}{x-2}=-2 x→1+limx2−3x+2x2−1=x→1+lim(x−2)(x−1)(x+1)(x−1)=x→1+limx−2x+1=−2
lim x → 2 − x 2 − 1 x 2 − 3 x + 2 = lim x → 2 − ( x + 1 ) ( x − 1 ) ( x − 2 ) ( x − 1 ) = lim x → 2 − x + 1 x − 2 = − ∞ \lim\limits_{x \to 2^-}\frac {x^2-1}{x^2 -3x + 2}=\lim\limits_{x \to 2^-}\frac {(x+1)(x-1)}{(x-2)(x-1)}=\lim\limits_{x \to 2^-}\frac {x+1}{x-2}=-\infty x→2−limx2−3x+2x2−1=x→2−lim(x−2)(x−1)(x+1)(x−1)=x→2−limx−2x+1=−∞
lim x → 2 + x 2 − 1 x 2 − 3 x + 2 = lim x → 2 + ( x + 1 ) ( x − 1 ) ( x − 2 ) ( x − 1 ) = lim x → 2 + x + 1 x − 2 = ∞ \lim\limits_{x \to 2^+}\frac {x^2-1}{x^2 -3x + 2}=\lim\limits_{x \to 2^+}\frac {(x+1)(x-1)}{(x-2)(x-1)}=\lim\limits_{x \to 2^+}\frac {x+1}{x-2}=\infty x→2+limx2−3x+2x2−1=x→2+lim(x−2)(x−1)(x+1)(x−1)=x→2+limx−2x+1=∞
∴ \therefore ∴在 x = 1 x=1 x=1处是可去间断点,在 x = 2 x=2 x=2处是第二类间断点
导数
导数定义
-
平均速度: ( 速度 ) v = s ( 路程 ) t ( 时间 ) (速度)v=\frac {s(路程)}{t(时间)} (速度)v=t(时间)s(路程),但是如何表示瞬时速度呢?
-
瞬时经过路程: Δ s = s ( t 0 + Δ t ) − s ( t 0 ) \Delta s=s(t_0 + \Delta t) - s(t_0) Δs=s(t0+Δt)−s(t0)
-
这一小段的平均速度: v ‾ = Δ s Δ t = s ( t 0 + Δ t ) − s ( t 0 ) Δ t \overline v=\frac {\Delta s}{\Delta t}=\frac {s(t_0 + \Delta t)-s(t_0)}{\Delta t} v=ΔtΔs=Δts(t0+Δt)−s(t0)
-
当 Δ t → 0 \Delta t \to 0 Δt→0时也就是瞬时速度了: v ( t 0 ) = lim Δ t → 0 v ‾ = lim Δ t → 0 Δ s Δ t = lim Δ t → 0 s ( t 0 + Δ t ) − s ( t 0 ) Δ t v(t_0)=\lim\limits_{\Delta t \to 0}\overline v=\lim\limits_{\Delta t \to 0}\frac {\Delta s}{\Delta t}=\lim\limits_{\Delta t \to 0}\frac {s(t_0 + \Delta t)-s(t_0)}{\Delta t} v(t0)=Δt→0limv=Δt→0limΔtΔs=Δt→0limΔts(t0+Δt)−s(t0)
-
如果平均变化率的极限存在, lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim\limits_{\Delta x \to 0}\frac {\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac {f(x_0+\Delta x)-f(x_0)}{\Delta x} Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0),则称此极限为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数 f ′ ( x 0 ) f^{'}(x_0) f′(x0), y ′ ∣ x = x 0 y^{'}|_{x=x_0} y′∣x=x0, d y d x ∣ x = x 0 \frac {\mathrm{d} y}{\mathrm{d} x}|_{x=x_0} dxdy∣x=x0或 d f ( x ) d x ∣ x = x 0 \frac {\mathrm{d} f(x)}{\mathrm{d} x}|_{x=x_0} dxdf(x)∣x=x0
导数公式: