网易公开课讲义3 Generalized Linear Models 笔记

1.指数家族 (伯努利分布、泊松分布、高斯分布、贝塔分布、迪特利特分布等)

η:natural parameter

T(y) :sufficient statistic 充分统计量,(如果θ是总体样本的分布函数的参数,其充分统计量为t,则给定t的取值,样本的分布与θ无关) 

a(η) log partition function,保证p(y;η)不同y值的概率加起来=1 


T、a、b函数确定的话,就确定一种分布族(如伯努利分布),函数参数为ηη的取值不同表示同一分布族里面不同的分布(如伯努利分布里p(y=1|x)取值不一样)


2.伯努利分布的指数形式如下



 因此


3.构造GLM

三个假设

(1)y|x;θ 满足如上形式的指数分布,参数为η

(2)我们要预测的目标是E[T(y)|x],即给定x,求T(y)。

当T(y)=y时,要学习的假设h(x)=E[y|x]

(3)η=θ ^T x


因此,当y|x:θ 满足伯努利分布时,h(x)=E[y|x]=Ф


4 Softmax Regression (T(y)多维)

例如 y可以取值1,2,3...,k,可看成k分类问题

则T(y)为k-1维向量

      其概率分布


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值