poj2385 Apple Catching

t is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds. 

Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples). 

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.
Input
* Line 1: Two space separated integers: T and W 

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.
Output
* Line 1: The maximum number of apples Bessie can catch without walking more than W times.
Sample Input
7 2
2
1
1
2
2
1
1
Sample Output
6
Hint
INPUT DETAILS: 

Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice. 

        是一道dp题,首先要找到状态方程:

        使用dp[i][j]表示第i分钟走了j次后最多能摘到几个苹果;由于从第一棵树开始且只有两棵树;

        所以就% 2 + 1;就可以很好的表示为其实Bessie在那棵树下。如果j % 2+1= a[i],则表示

        是否可以摘得苹果,此时状态方程就是 dp[][]=max(dp[i-1][j],dp[i-1][j-1])+1;

        else:dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]);

        重要的是使用dp[i][0]表示没有移动是得到的苹果。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>

using namespace std;
const int maxn = 1000 + 10;
int a[maxn];
int dp[maxn][31];
int t,w;
int main()  
{  
    ios::sync_with_stdio(false);
    while(cin >> t >> w)  
    {   
		memset(dp,0,sizeof(dp)); 
        for(int i = 1;i <= t; i++){
        	cin >> a[i];
		} 
        for(int i = 1; i <= t; i++){  
            dp[i][0] = dp[i-1][0];  
            if(a[i] == 1)  
                dp[i][0]++;  
            for(int j = 1;j <= w; j++){  
                if(j % 2 + 1 == a[i]){  
                    dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]) + 1;  
                }  
                else  
                    dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]);  
            }  
        }  
       /* for(int i = 1; i <= t; i++){
        	for(int j = 0; j <= w; j++ ){
        		cout << dp[i][j] <<" ";
			}cout << endl;
		}cout << endl;*/
		int Max = 0;
        for(int i = 0; i <= w; i++)  
           Max = max(Max, dp[t][i]);    
        printf("%d\n",Max);  
    }  
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值