Graph Matching随想

图网络和图配对

Graph Neural Network

首先简要复习图网络GNN部分。
在这里插入图片描述

对比一下图网络和一般网络异同。
X → W X \bm{X} \rightarrow \bm{WX} XWX
这是一般的神经网络。而对于图网络来说
( A , X ) → W ( A , X ) (\bm{A},\bm{X}) \rightarrow \bm{W}(\bm{A},\bm{X}) (A,X)W(A,X)
相比于一般网络而言,其输入部分可以认为是多了一部分图的信息。具体图网络怎么运算的,以后单独开一个blog来介绍,这里不具体展开了。

Graph Matching

Graph Matching是一个非常有用的技术要点。
在这里插入图片描述
上图来自Deep Graph Matching Consensus。这里主要看图配对的第一部分,我觉得这一部分比较重要吧,后面的邻居信息做consensus,似乎有一点复杂,后面看懂了再说。第一阶段就是来两个图卷积(共用一个图网络)
H 1 = ϕ 1 ( X 1 , A 1 ) H 2 = ϕ 1 ( X 2 , A 2 ) \bm{H_1} = \phi_1 (\bm{X}_1,\bm{A}_1)\\ \bm{H_2} = \phi_1 (\bm{X}_2,\bm{A}_2) H1=ϕ1(X1,A1)H2=ϕ1(X2,A2)
接着原文用内积计算两个节点之间的距离矩阵。当然,用欧式距离,我觉得也可以了。用公式表示即为
C = d ( H 1 , H 2 ) \bm{C} = d(\bm{H_1},\bm{H_2}) C=d(H1,H2)
最后带入Sinkhorn算法中一通计算,图配对就完成了。
S i n k h o r n ( C ) = S ∈ R M × N Sinkhorn(\bm{C}) = \bm{S} \in \mathbb{R}^{M \times N} Sinkhorn(C)=SRM×N
配对阵中的数值介于0和1之间。然后由于部分点之间的配对是有Ground Truth的,则给出损失函数为
L = − E ( log ⁡ ( S i , π g t ( i ) ) ) L = -\mathbb{E}(\log(\bm{S}_{i,\pi_{gt}(i)})) L=E(log(Si,πgt(i)))
当然作者随后提出,利用配对好的 S \bm{S} S矩阵可以实现域的变换。
X 2 ^ = S T X 1 X 1 ^ = S X 2 \hat{\bm{X}_2} = \bm{S}^T\bm{X}_1\\ \hat{\bm{X}_1} = \bm{S}\bm{X}_2 X2^=STX1X1^=SX2
接下来原论文话锋一转,不妨设原始域的数据为One-Hot的 I 1 \bm{I}_1 I1,然后用配对矩阵进行变换到目标域去,就是 S T I 1 \bm{S}^T\bm{I}_1 STI1,在建立第二阶段的图网络
K 1 = ϕ 2 ( I 1 , A 1 ) K 2 = ϕ 2 ( S T I 1 , A 2 ) \bm{K_1} = \phi_2 (\bm{I}_1,\bm{A}_1)\\ \bm{K_2} = \phi_2 (\bm{S}^T\bm{I}_1,\bm{A}_2) K1=ϕ2(I1,A1)K2=ϕ2(STI1,A2)
这里鄙人不才,我觉得或许如下计算更合理一些吧
K 1 = ϕ 1 ( X 1 ^ , A 1 ) K 2 = ϕ 1 ( X 2 ^ , A 2 ) \bm{K_1} = \phi_1 (\hat{\bm{X}_1} ,\bm{A}_1)\\ \bm{K_2} = \phi_1 (\hat{\bm{X}_2},\bm{A}_2) K1=ϕ1(X1^,A1)K2=ϕ1(X2^,A2)
然后计算距离矩阵的方法也有所调整
C = C + d ( K 1 , K 2 ) \bm{C} = \bm{C} + d(\bm{K_1},\bm{K_2}) C=C+d(K1,K2)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值