---恢复内容开始---
IRIS分类问题
分类:根据数据集目标的特征和属性,划分为已有的类别中
常用的分类算法:K紧邻(KNN),逻辑回归,决策树,朴素贝叶斯
#iris数据加载
from sklearn import datasets
iris=datasets.load_iris()
#展示iris数据
print(iris.data)
In [3]:
#打印出属性名称
print(iris.feature_names)
In [4]:
#打印输出的结果
print(iris.target)
In [5]:
#结果的含义
print(iris.target_names)
In [6]:
#确认数据类型
print(type(iris.data))
In [7]:
print(type(iris.target))
In [8]:
#确认输入的数据维度,行列
print(iris.data.shape)
In [9]:
#确认输出数据的维度,只有1列
print(iris.target.shape)
In [10]:
#x输入数据赋值,y输出数据赋值
x=iris.data
y=iris.target
In [11]:
#确认x
print(x)
In [12]:
#确认y
print(y)
In [13]:
#使用scikit-learn建模四步骤
#1,模型调用
from sklearn.neighbors import KNeighborsClassifier
In [14]:
#2,创建实例
knn=KNeighborsClassifier(n_neighbors=1)
In [15]:
print(knn)
In [16]:
#3,模型训练
knn.fit(x,y)
Out[16]:
In [18]:
#4,模型对一个样本的预测
knn.predict([[1,2,3,4]])
Out[18]:
In [19]:
#模型对多个样本的预测
x_test=[[1,2,3,4],[2,4,1,2]]
knn.predict(x_test)
Out[19]:
In [20]:
#设定一个新的k值进行KNN建模
knn_5=KNeighborsClassifier(n_neighbors=5)
knn_5.fit(x,y)
knn.predict(x_test)
Out[20]:
In [21]:
#确认模型结构
print(knn_5)
In [ ]:
---恢复内容结束---