Spark学习笔记------Idea+Scala+Maven项目实例

    之前的两篇文章是搭建Spark环境,准备工作做好之后接下来写一个简单的demo,功能是统计本地某个文件中每个单词出现的次数。开发环境为Idea+Maven,开发语言为scala,首先我们要在Idea中下载scala的插件,具体如下:

    一、Idea开发环境准备

    1.下载scala插件

    安装插件之前需确保Idea的JDK已经安装并配置好,然后打开Idea,选择File--->Settings,在新窗口中选择Plugins,在右边的输入框中输入“scala”关键字进行搜索,然后在搜索结果中点击下面的Install JetBrains plugin...进行安装。

    安装完成之后需要重启Idea。

    

    二、新建项目工程

    打开Idea,选择File--->New--->Project,在新窗口中选择Maven,勾选右边的Create from archetype,找到scala-archetype-simple展开选择1.2,然后点击Next。

 

    输入GroupId和ArtifactId,然后继续Next,之后选择maven、repository路径并输入项目名称。

    pom文件如下:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.test</groupId>
  <artifactId>test</artifactId>
  <version>1.0-SNAPSHOT</version>
  <inceptionYear>2008</inceptionYear>
  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <spark.version>2.3.2</spark.version>
    <scala.version>2.11</scala.version>
    <hadoop.version>2.7.0</hadoop.version>
  </properties>

  <dependencies>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_${scala.version}</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql_${scala.version}</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-hive_${scala.version}</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming_${scala.version}</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-client</artifactId>
      <version>2.6.0</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming-kafka_${scala.version}</artifactId>
      <version>1.6.3</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-mllib_${scala.version}</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
      <version>5.1.39</version>
    </dependency>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.12</version>
    </dependency>
  </dependencies>

  <pluginRepositories>
    <pluginRepository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </pluginRepository>
  </pluginRepositories>

  <build>
    <sourceDirectory>src/main/scala</sourceDirectory>
    <testSourceDirectory>src/test/scala</testSourceDirectory>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
              <goal>testCompile</goal>
            </goals>
          </execution>
        </executions>
        <configuration>
          <scalaVersion>${scala.version}</scalaVersion>
          <args>
            <arg>-target:jvm-1.5</arg>
          </args>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-eclipse-plugin</artifactId>
        <configuration>
          <downloadSources>true</downloadSources>
          <buildcommands>
            <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
          </buildcommands>
          <additionalProjectnatures>
            <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
          </additionalProjectnatures>
          <classpathContainers>
            <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
            <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
          </classpathContainers>
        </configuration>
      </plugin>
    </plugins>
  </build>
</project>

    接下来我们要实现分析并统计文件中的单词出现的次数,类文件代码如下:

package com.test
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf

object WordCountLocal {
  def main(args: Array[String]) {
    /**
      * SparkContext 的初始化需要一个SparkConf对象
      * SparkConf包含了Spark集群的配置的各种参数
      */
    val conf=new SparkConf()
      .setMaster("local")//启动本地化计算
      .setAppName("testRdd")//设置本程序名称

    //Spark程序的编写都是从SparkContext开始的
    val sc=new SparkContext(conf)
    //以上的语句等价与val sc=new SparkContext("local","testRdd")
    val data=sc.textFile("D:\\tmp\\hello.txt")//读取本地文件
    data.flatMap(_.split(" "))//下划线是占位符,flatMap是对行操作的方法,对读入的数据进行分割
      .map((_,1))//将每一项转换为key-value,数据是key,value是1
      .reduceByKey(_+_)//将具有相同key的项相加合并成一个
      .collect()//将分布式的RDD返回一个单机的scala array,在这个数组上运用scala的函数操作,并返回结果到驱动程序
      .foreach(println)//循环打印
  }
}

    hello.txt文件内容可以随便填写,我的如下:

hello scala
hello world
hello nihao
i am scala
this is a spark example
running program
is ok

        

    三、运行工程

    右键WordCountLocal类,选择Run,如果运行失败并出现java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.请确认下本地hadoop-x.x.x/bin目录下有没有winutils.exe这个文件,如果没有请到github上下载,

    地址:https://github.com/srccodes/hadoop-common-2.2.0-bin

    下载并解压成功后配置环境变量,增加用户变量HADOOP_HOME,值是下载的zip包解压的目录,然后在系统变量path里增加%HADOOP_HOME%\bin 即可。大功告成之后再次执行成功,结果如下:

    

    一个简单的数据统计demo就完成了。

转载于:https://www.cnblogs.com/chxuyuan/p/9882064.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值