计算机视觉
文章平均质量分 92
授渔
这个作者很懒,什么都没留下…
展开
-
TFVT-HRI论文简报
TFVT-HRI论文简报论文信息题目:Proactive Interaction Framework for Intelligent Social Receptionist Robots(智能社交接待机器人的主动交互框架)作者:Yang Xue, Fan Wang, Jiangyong Li and Yueqiang Dong : Baidu Natural LanguageProcessing DepartmentHao Tian : Baidu ResearchMin Zhao and H原创 2021-06-29 20:21:17 · 634 阅读 · 0 评论 -
超详细斯坦福CS231n课程笔记(第六课)——训练神经网络(上)
训练神经网络(上)这一章中将讨论训练神经网络的一些细节问题,包括:刚开始要如何建立起神经网络;要选择什么样的激活函数;如何做数据的预处理,权重初始化、正则化和梯度检查;讨论训练中的动态变化、训练监控过程、超参数优化;讨论模型评估和模型集成。1. 激活函数激活函数的用途?如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层节点的输入都是上层输出的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感原创 2020-07-10 13:38:27 · 609 阅读 · 0 评论 -
超详细斯坦福CS231n课程笔记(第五课)——卷积神经网络
卷积神经网络1. 历史1.1 神经网络发展历史 1957, Frank Rosenblatt:神经元,其实就是简单的线性分类器,用于字母识别。 1960,Widow & Hoff,发明了Adaline/Madaline,首次尝试把线性层叠加,整合为多层感知器网络,不过此时反向传播和其他训练算法并未出现。 1986,Rumelhart,反向传播算法。 2006,Hinton & Salakhutdinov,深层神经网络可被高效训练:通过受限玻尔兹原创 2020-07-04 21:19:25 · 639 阅读 · 0 评论 -
超详细斯坦福CS231n课程笔记(第四课)——反向传播和神经网络
Backpropagation and Neural Network1. 反向传播1.1 计算图我们可以把f=W*x用一张类似流程图的东西表达出来,如下图所示,我们把这张图叫做计算图。其实就是把公式分解成小的计算单元。在这张图中,输入的训练数据x和权重W通过矩阵乘法连接到一起,运算后得到得分向量s,s经过hinge loss计算得到损失项Li,最后L是数据项和正则项R的和。那么反向传播是如何工作的?举个例子。1.1.1 栗子1这个式子f(x,y,z)=(x+y)z。我们取几个原创 2020-06-30 23:52:04 · 725 阅读 · 1 评论 -
超详细斯坦福CS231n课程笔记(第三课)——损失函数和优化损失函数
损失函数和优化损失函数1. 损失函数SVM在线性分类中,分类函数为f(x)= Wx + b,这时,可以用一个函数把W当作输入,然后看一下得分,定量地估计W的好坏,这个函数被称为损失函数。在这个例子中,猫目前的分类不对,车子分类对了,从这个W来说青蛙的图片是彻底地分类错了,因为青蛙的分数甚至比其他类别的都要低。通常来说我们有N个样本,其中x是算法的输入,在图像分类问题中,x其实是图片每个像素点所构成的数据集,y是你希望算法预测出来的东西,我们通常称之为标签或者目标。我们把损失函数计做.原创 2020-06-27 15:12:39 · 665 阅读 · 0 评论 -
超详细斯坦福CS231n课程笔记(第二课)——图像分类
图像分类1. 概述关于图像分类的任务,这是一个计算机视觉中真正核心的任务,准确来说,就是我们怎么研究图像处理的任务更具体的说,当你做图像分类时,分类系统接收一些输入图像,比如说可爱的猫咪,并且系统已经清楚了一些已经确定了分类或者标签的集合,并且这些标签可能是 一只狗狗或者一只猫咪,也有可能是一辆卡车,那计算机的工作就是看图片,并且给它分配其中一些固定的分类或标签。这听起来是一个很简单的问题,因为大家大脑里的视觉系统,天生就是来做这些视觉识别任务,但是对于机器来说,这是一个非常非常困难的问题。原创 2020-06-25 11:52:31 · 584 阅读 · 0 评论 -
超详细斯坦福CS231n课程笔记(第一课)
课程介绍1. 概述计算机视觉:顾名思义,就是针对视觉数据的研究背景:YouTube每秒有5小时的视频被上传,需要正确分类。2. 历史生物视觉:5亿4千年前:动物进化出了眼睛机器视觉:17世纪文艺复兴时期:小孔成像原理,最初的相机出现50~60年代,Hubel和Wiesel研究猫的视觉系统David Marr (麻省理工学院视觉专家)70年代撰写了一本非常有影响力的书如何理解视觉的我们应该如何处理计算机视觉开发如何可以使计算机识别视觉世界的算法80年代David原创 2020-06-24 00:21:45 · 409 阅读 · 0 评论