478,回溯算法解单词搜索

想了解更多数据结构以及算法题,可以关注微信公众号“数据结构和算法”,每天一题为你精彩解答。也可以扫描下面的二维码关注
在这里插入图片描述


问题描述

给定一个二维网格和一个单词,找出该单词是否存在于网格中。


单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。


示例:

board =

[

[‘A’,‘B’,‘C’,‘E’],

[‘S’,‘F’,‘C’,‘S’],

[‘A’,‘D’,‘E’,‘E’]

]


给定 word = “ABCCED”, 返回 true

给定 word = “SEE”, 返回 true

给定 word = “ABCB”, 返回 false

提示:

  • board 和 word 中只包含大写和小写英文字母。
  • 1 <= board.length <= 200
  • 1 <= board[i].length <= 200
  • 1 <= word.length <= 10^3

回溯算法解决

这题是让判断给定的单词是否在二维网格中,所以最简单的一种方式就是使用dfs,沿着一个点往他的4个方向判断,如果最后能找到给定的单词就返回true,否则就返回false。


回溯算法实际上就是一个类似枚举的搜索尝试过程,也就是一个个去试,我们解这道题也是通过一个个去试,下面就用示例1来画个图看一下

在这里插入图片描述

他是从矩形中的一个点开始往他的上下左右四个方向查找,这个点可以是矩形中的任何一个点,所以代码的大致轮廓我们应该能写出来,就是遍历矩形所有的点,然后从这个点开始往他的4个方向走,因为是二维数组,所以有两个for循环,代码如下

public boolean exist(char[][] board, String word) {
    char[] words = word.toCharArray();

    //下面两个for循环,来遍历数组的每一个值
    for (int i = 0; i < board.length; i++) {
        for (int j = 0; j < board[0].length; j++) {
            //从[i,j]这个坐标开始查找,如果能查找到,直接
            // 返回true,后面就不需要再查找了
            if (dfs(board, words, i, j, 0))
                return true;
        }
    }
    return false;
}

这里关键代码是dfs这个函数,因为每一个点都可以往他的4个方向查找,所以我们可以把它想象为一棵4叉树,就是每个节点有4个子节点,而树的遍历我们最容易想到的就是递归,我们来大概看一下

boolean dfs(char[][] board, char[] word, int i, int j, int index) {
    if (边界条件的判断) {
        return;
    }

    一些逻辑处理

    boolean res;
    //往右
    res = dfs(board, word, i + 1, j, index + 1)
    //往左
    res |= dfs(board, word, i - 1, j, index + 1)
    //往下
    res |= dfs(board, word, i, j + 1, index + 1)
    //往上
    res |= dfs(board, word, i, j - 1, index + 1)
    //上面4个方向,只要有一个能查找到,就返回true;
    return res;
}

最终的完整代码如下

public boolean exist(char[][] board, String word) {
    char[] words = word.toCharArray();
    for (int i = 0; i < board.length; i++) {
        for (int j = 0; j < board[0].length; j++) {
            //从[i,j]这个坐标开始查找
            if (dfs(board, words, i, j, 0))
                return true;
        }
    }
    return false;
}

boolean dfs(char[][] board, char[] word, int i, int j, int index) {
    //边界的判断,如果越界直接返回false。index表示的是查找到字符串word的第几个字符,
    //如果这个字符不等于board[i][j],说明验证这个坐标路径是走不通的,直接返回false
    if (i >= board.length || i < 0 || j >= board[0].length || j < 0 || board[i][j] != word[index])
        return false;
    //如果word的每个字符都查找完了,直接返回true
    if (index == word.length - 1)
        return true;
    //把当前坐标的值保存下来,为了在最后复原
    char tmp = board[i][j];
    //然后修改当前坐标的值
    board[i][j] = '.';
    //走递归,沿着当前坐标的上下左右4个方向查找
    boolean res = dfs(board, word, i + 1, j, index + 1)
            || dfs(board, word, i - 1, j, index + 1)
            || dfs(board, word, i, j + 1, index + 1)
            || dfs(board, word, i, j - 1, index + 1);
    //递归之后再把当前的坐标复原
    board[i][j] = tmp;
    return res;
}

总结

要想弄懂这题,首先要搞懂回溯算法,要想弄懂回溯算法,就要先要搞懂递归。关于递归和回溯算法之前有过详细介绍,可以看下

450,什么叫回溯算法,一看就会,一写就废

426,什么是递归,通过这篇文章,让你彻底搞懂递归


在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据结构和算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值