导读:7月26日,14:00-17:20,DataFunCon:推荐算法论坛将准时开启,感兴趣的小伙伴和小编一起来了解下吧:
详细介绍:
出品人:喻宏勇
腾讯看点推荐研发总监 | 腾讯14级专家
工作10多年,主要在推荐、搜索、数据挖掘等领域研发以提升产品体验。
丁卓冶 博士
京东 | 推荐算法负责人
分享主题:京东推荐算法的探索与实践
内容摘要:本分享主要介绍京东推荐算法的一些探索和实践,主要包括精准用户画像构建、推荐召回、推荐排序等关键技术,其中包括一些创新技术,也包括在业务中的落地实践。
听众收益:了解电商推荐的核心技术;了解创新技术在工业界落地经验。
新技术/实用技术点:多目标学习、深度强化学习、用户序列建模等技术在推荐应用。
嘉宾简介:京东推荐算法负责人。前雅虎实验室研究员,多年推荐、广告算法的相关经验。博士毕业于复旦大学。多项工作发表于KDD、Sigir、IJCAI、WSDM等顶级会议。
谢晓辉 博士
Hulu | Principal research lead
分享主题:推荐系统中冷启动问题探索与实践
内容摘要:受限于训练数据不足,如何做好内容/用户/模型的冷启动是一个推荐系统中非常值得研究和探讨的课题。
听众收益:了解冷启动的问题、来源、在推荐系统中的重要性。通过对新用户/新 ( 冷 ) 内容的处理实例了解hulu如何解决冷启动问题。
新技术/实用技术点:
New user lifecycle, multi-arm bandit algorithms
嘉宾简介:Hulu北京首席研究主管。具有近20年算法研发创新和管理经验。专注于模式识别、多媒体信息处理、推荐模型与用户理解等多个算法研究领域,对人工智能、人机交互、推荐等相关领域的研究以及成果落地和产品化有丰富经验,拥有100+相关专利,学术论文近20篇。本科毕业于西安交通大学实验班,北京邮电大学取得模式识别领域博士学位。曾先后就职于松下电器研发中心、诺基亚北京研究院、联想核心技术研究室等部门。
章莺
网易云音乐 | 资深算法工程师
分享主题:音乐推荐中用户行为序列深度建模
内容摘要:云音乐推荐系统致力于通过AI算法的落地,实现千人千面的个性化音乐推荐系统;本次分享重点介绍推荐系统在云音乐的落地实践,以及在音乐推荐系统中遇到的挑战和解决方案。
听众收益:了解云音乐推荐系统的演进过程,探讨推荐系统演进过程遇到的挑战和可能的解决方案。
新技术/实用技术点:音乐场景下的多行为域的序列建模,包括用户多兴趣点挖掘、多空间长短期兴趣建模;以及音乐场景下的的用户兴趣演化网络建模。
嘉宾简介:毕业于浙江大学数学系,目前就职于网易云音乐,担任资深推荐算法工程师,主要负责音乐推荐系统相关算法工作,在召回、排序、歌曲分发上有丰富的经验。率先在云音乐实践百亿级别实时推荐模型,并在多目标训练和序列行为数据上有深入的研究。
潘建
小米 | 高级软件工程师
分享主题:手机厂商怎么做信息流推荐
内容摘要:小米信息流推荐技术简介,从用户画像、资源召回、排序模型、多目标融合模型、资源混排模型全景介绍小米信息流推荐技术。
听众收益:了解信息流推荐框架及策略。
新技术/实用技术点:在竞争激烈的信息流市场,怎么做到投入较少的情况下取得最大化收益。
嘉宾简介:毕业于北京科技大学,现任高级软件工程师,负责小米信息流推荐策略。曾就职于百度,深度参与百度信息流建设。熟悉信息流用户画像、召回策略、排序策略、多目标融合等技术方向。
申恩兆
新浪微博 | 算法工程师
分享主题:微博推荐算法实践与ML平台演进
内容摘要:微博推荐算法实践与ML平台演进,微博作为全球领先的中文广场社交平台,拥有海量用户与数据。如何从海量数据中挖掘出有价值的信息,来为业务赋能,微博都用了哪些推荐算法,分别作了什么事情,踩过哪些坑,现在分别如何解决的。以及在长时间的改进与积累过程中,微博技术架构是如何演进的,当前架构如何更好的发挥算法的优势,为业务产生更多有价值的支撑。
听众收益:
针对某算法/模型/大数据在实际应用中的问题,提出解决方案或思路
微博场景下,基于海量数据,如何将已有算法价值发挥到极致,实践中遇到了哪些坑,微博同学是怎么解决的。
新技术/实用技术点:在线机器学习、机器学习平台、混合召回、DeepLearning、FiBiNet等。
活动报名:
识别二维码,免费报名
关于我们:
DataFunTalk 专注于大数据、人工智能技术应用的分享与交流。发起于2017年,在北京、上海、深圳、杭州等城市举办超过100场线下沙龙、论坛及峰会,已邀请近500位专家和学者参与分享。其公众号 DataFunTalk 累计生产原创文章300+,百万+阅读,6万+精准粉丝。
????分享、点赞、在看,给个三连击呗!????