第15届推荐系统年会(ACM RecSys 2021)将于9月27日-10月1日在荷兰阿姆斯特丹举行,大会表明可以以更包容的方式通过线上的形式允许有需要的人参与其中。去年的推荐系统年会论文集锦请参考:围观RecSys2020 | 推荐系统顶会说了啥?。
需要说明的是,本年度的会议论文接收列表(The List of Accepted Papers)已于2021年7月8日在官方网站公布,其中包括49篇常规论文(Regular Papers),3篇复现性论文(Reproducibility Papers),23篇最新成果论文(Late-breaking Results Papers),10篇演示论文(Demo Papers),8篇博士研讨会论文(Doctoral Seminar Papers),14篇工业界演讲(Industry Talks)以及11篇海报(Posters)。官网地址:
https://recsys.acm.org/recsys21/accepted-contributions/
通过对本次年会论文以及教程的总结发现,此次大会主要聚焦在了推荐系统中的Bias问题、冷启动问题、对话推荐系统、推荐中的隐私和安全问题、多模态推荐系统、推荐系统的可解释性以及会话推荐等。
大会教程为以下6个:
Counterfactual Learning and Evaluation for Recommender Systems: Foundations, Implementations, and Recent Advances
by Yuta Saito (Cornell University, USA) and Thorsten Joachims (Cornell University, USA)
Multi-Modal Recommender Systems: Hands-On Exploration
by Quoc-Tuan Truong (Singapore Management University, Singapore), Aghiles Salah (Rakuten Institute of Technology, France), and Hady W. Lauw (Singapore Management University, Singapore)
End-to-End Session-Based Recommendation on GPU
by Gabriel de Souza Pereira Moreira (NVIDIA, Brazil), Sara Rabhi (NVIDIA, Canada), Ronay Ak (NVIDIA, USA), and Benedikt Schifferer (NVIDIA, USA)
Pursuing Privacy in Recommender Systems: the View of Users and Researchers from Regulations to Applications
by Vito Walter Anelli (Polytechnic University of Bari, Italy), Luca Belli (Twitter, USA), Yashar Deldjoo, Tommaso Di Noia, Antonio Ferrara, Fedelucio Narducci, and Claudio Pomo (Polytechnic University of Bari, Italy)
Conversational Recommendation: Formulation, Methods, and Evaluation
by Wenqiang Lei (National University of Singapore, Singapore), Chongming Gao (University of Science and Technology of China, China), and Maarten de Rijke (University of Amsterdam & Ahold Delhaize, Netherlands)
Bias Issues and Solutions in Recommender System
by Jiawei Chen (University of Science and Technology of China, China), Xiang Wang (National University of Singapore, Singapore), Fuli Feng (National University of Singapore, Singapore), and Xiangnan He (University of Science and Technology of China, China)
另外,大会还提供了可复现性的赛道,有3篇论文在此行列,分别涉及到序列推荐中的采样策略、对话推荐系统以及重温NCF与MF,具体的论文名称以及作者如下:
A Case Study on Sampling Strategies for Evaluating Neural Sequential Item Recommendation Models
by Alexander Dallmann, Daniel Zoller, Andreas Hotho (Data Science Chair, University of Würzburg, Würzburg, Germany)Generation-based vs. Retrieval-based Conversational Recommendation: A User-Centric Comparison
by Ahtsham Manzoor and Dietmar Jannach (University of Klagenfurt, Klagenfurt, Austria)Reenvisioning the comparison between Neural Collaborative Filtering and Matrix Factorization
by Vito Walter Anelli (Polytechnic University of Bari, Bari, Italy), Alejandro Bellogin (Information Retrieval Group, Universidad Autonoma de Madrid, Madrid, Spain), Tommaso Di Noia Polytechnic (University of Bari, Bari, Italy), and Claudio Pomo (Polytechnic University of Bari, Bari, Italy)
最后,小编为大家收集整理了该年会的论文列表,大家可以对自己感兴趣或者自己研究方向的论文进行更深入的阅读。其中对论文进行总结发现,除了以上列出的大类外,还有一些前沿的研究技术,比如涉及到的强化学习、联邦学习等。
A Payload Optimization Method for Federated Recommender Systems
Farwa K. Khan, Adrian Flanagan, Kuan Eeik Tan, Zareen Alamgir, and Muhammad Ammad-ud-dinAccordion: A Trainable Simulator for Long-Term Interactive Systems
James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony JebaraAn Audit of Misinformation Filter Bubbles on YouTube: Bubble Bursting and Recent Behavior Changes
Matus Tomlein, Branislav Pecher, Jakub Simko, Ivan Srba, Robert Moro, Elena Stefancova, Michal Kompan, Andrea Hrckova, Juraj Podrouzek, and Maria BielikovaBlack-Box Attacks on Sequential Recommenders via Data-Free Model Extraction
Zhenrui Yue, Zhankui He, Huimin Zeng, and Julian McAuleyBurst-induced Multi-Armed Bandit for Learning Recommendation
Rodrigo Alves, Antoine Ledent, and Marius KloftcDLRM: Look Ahead Caching for Scalable Training of Recommendation Models
Keshav Balasubramanian, Abdulla Alshabanah, Joshua D Choe, and Murali AnnavaramCold Start Similar Artists Ranking with Gravity-Inspired Graph Autoencoders
Guillaume Salha-Galvan, Romain Hennequin, Benjamin Chapus, Viet-Anh Tran, and Michalis VazirgiannisDebiased Explainable Pairwise Ranking from Implicit Feedback
Khalil Damak, Sami Khenissi, and Olfa NasraouiDenoising User-aware Memory Network for Recommendation
Zhi Bian, Shaojun Zhou, Hao Fu, Qihong Yang, Zhenqi Sun, Junjie Tang, Guiquan Liu, kaikui liu, and Xiaolong LiDesigning Online Advertisements via Bandit and Reinforcement Learning
Yusuke Narita, Shota Yasui, and Kohei YataEvaluating Off-Policy Evaluation: Sensitivity and Robustness
Yuta Saito, Takuma Udagawa, Haruka Kiyohara, Kazuki Mogi, Yusuke Narita, and Kei TatenoEX3: Explainable Attribute-aware Item-set Recommendations
Yikun Xian, Tong Zhao, Jin Li, Jim Chan, Andrey Kan, Jun Ma, Xin Luna Dong, Christos Faloutsos, George Karypis, S. Muthukrishnan, and Yongfeng ZhangFast Multi-Step Critiquing for VAE-based Recommender Systems
Diego Antognini and Boi FaltingsFollow the guides: disentangling human and algorithmic curation in online music consumption
Quentin Villermet, Jérémie Poiroux, Manuel Moussallam, Thomas Louail, and Camille RothHierarchical Latent Relation Modeling for Collaborative Metric Learning
Viet-Anh Tran, Guillaume Salha-Galvan, Romain Hennequin, and Manuel MoussallamI want to break free! Recommending friends from outside the echo chamber
Antonela Tommasel, Juan Manuel Rodriguez, and Daniela GodoyInformation Interactions in Outcome Prediction: Quantification and Interpretation using Stochastic Block Models
Gaël Poux-Médard, Julien Velcin, and Sabine LoudcherLarge-scale Interactive Conversational Recommendation System
Ali Montazeralghaem, James Allan, and Philip S. ThomasLarge-Scale Modeling of Mobile User Click Behaviors Using Deep Learning
Xin Zhou and Yang LiLearning An Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems
Danni Peng, Sinno Jialin Pan, Jie Zhang, and Anxiang ZengLearning to Represent Human Motives for Goal-directed Web Browsing
Jyun-Yu Jiang, Chia-Jung Lee, Longqi Yang, Bahareh Sarrafzadeh, Brent Hecht, Jaime TeevanLocal Factor Models for Large-Scale Inductive Recommendation
Longqi Yang, Tobias Schnabel, Paul N. Bennett, and Susan DumaisMatrix Factorization for Collaborative Filtering Is Just Solving an Adjoint Latent Dirichlet Allocation Model After All
Florian WilhelmMitigating Confounding Bias in Recommendation via Information Bottleneck
Dugang Liu, Pengxiang Cheng, Hong Zhu, Zhenhua Dong, Xiuqiang He, Weike Pan, and Zhong MingNegative Interactions for Improved Collaborative-Filtering: Don’t go Deeper, go Higher
Harald Steck and Dawen LiangNext-item Recommendations in Short Sessions
Wenzhuo Song, Shoujin Wang, Yan Wang, and SHENGSHENG WANGOnline Evaluation Methods for the Causal Effect of Recommendations
Masahiro SatoPage-level Optimization of e-Commerce Item Recommendations
Chieh Lo, Hongliang Yu, Xin Yin, Krutika Shetty, Changchen He, Kathy Hu, Justin M Platz, Adam Ilardi, and Sriganesh MadhvanathPartially Observable Reinforcement Learning for Dialog-based Interactive Recommendation
Yaxiong Wu, Craig Macdonald, and Iadh Ounis,Pessimistic Reward Models for Off-Policy Learning in Recommendation
Olivier Jeunen and Bart GoethalsPrivacy Preserving Collaborative Filtering by Distributed Mediation
Alon Ben Horin, and Tamir TassaProtoCF: Prototypical Collaborative Filtering for Few-shot Item Recommendation
Aravind Sankar, Junting Wang, Adit Krishnan, and Hari SundaramRecommendation on Live-Streaming Platforms: Dynamic Availability and Repeat Consumption
Jeremie Rappaz, Julian McAuley, and Karl AbererReverse Maximum Inner Product Search: How to efficiently find users who would like to buy my item?
Daichi Amagata and Takahiro HaraSemi-Supervised Visual Representation Learning for Fashion Compatibility
Ambareesh Revanur, Vijay Kumar, and Deepthi Sharma“Serving Each User”: Supporting Different Eating Goals Through a Multi-List Recommender Interface
Alain Starke, Edis Asotic, and Christoph TrattnerShared Neural Item Representations for Completely Cold Start Problem
Ramin Raziperchikolaei, Guannan Liang, and Young-joo ChungSparse Feature Factorization for Recommender Systems with Knowledge Graphs
Antonio Ferrara, Vito Walter Anelli, Tommaso Di Noia, and Alberto Carlo Maria MancinoStronger Privacy for Federated Collaborative Filtering With Implicit Feedback
Lorenzo Minto, Moritz Haller, Ben Livshits, and Hamed HaddadiThe Dual Echo Chamber: Modeling Social Media Polarization for Interventional Recommending
Tim Donkers and Jürgen ZieglerThe role of preference consistency, defaults and musical expertise in users’ exploration behavior in a genre exploration recommender
Yu Liang and Martijn C. WillemsenTogether is Better: Hybrid Recommendations Combining Graph Embeddings and Contextualized Word Representations
Marco Polignano, Cataldo Musto, Marco de Gemmis, Pasquale Lops, and Giovanni SemeraroTop-K Contextual Bandits with Equity of Exposure
Olivier Jeunen and Bart GoethalsTops, Bottoms, and Shoes: Building Capsule Wardrobes via Cross-Attention Tensor Network
Huiyuan Chen, Yusan Lin, Fei Wang, and Hao YangTowards Source-Aligned Variational Models for Cross-Domain Recommendation
Aghiles Salah, Thanh Binh Tran, and Hady LauwTowards Unified Metrics for Accuracy and Diversity for Recommender Systems
Javier Parapar and Filip RadlinskiTransformers4Rec: Bridging the Gap between NLP and Sequential / Session-Based Recommendation
Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even OldridgeUser Bias and Unfairness of Recommendation Algorithms in Beyond-Accuracy Measurements
Ningxia Wang, and Li ChenValues of Exploration in Recommender Systems
Minmin Chen, Yuyan Wang, Can Xu, Ya Le, mohit sharma, Lee Richardson, and Ed Chi