本文介绍的论文是《Deep Match to Rank Model for Personalized Click-Through Rate Prediction》。
论文下载地址是:https://github.com/lvze92/DMR。
本文提出了一种将协同过滤思想融入Ranking阶段CTR预估模型的模型Deep Match to Rank(简称DMR),提升了模型的个性化能力,并取得了不错的实验效果,一起来学习下。
1、背景
推荐系统通常分为两个阶段,即召回和排序阶段。在召回阶段会对用户和物品进行匹配,得到较小的一部分候选集进入到排序阶段。在召回阶段,协同过滤方法是最常用来计算用户和物品相关性的方法。在排序阶段,排序模型会对候选集的每个物品进行打分,然后选取得分最高的N个物品推荐给用户。而打分最为常用的方式是预测用户对物品的点击率。因此,点击率预估也受到了学术界和工业界众多研究者的关注。而本文也重点关注点击率预估问题。
对于点击率预估问题,个性化是提升其效果的一个重要的方面。个性化的一个重要方面就是对用户兴趣的刻画,如之前提到过的DIN、DIEN、DSIN等模型。但是这些模型忽略了建模用户和物品之间的相关性。用户和物品之间的相关性,可以直接衡量用户对目标商品的偏好强度。(下文中用户和物品的相关性,咱们用U2I相关性来表示)
表征U2I相关性,主要有基于矩阵分解和基于深度学习的方法。基于深度学习的方法,如咱们比较熟悉的Youtube的DNN召回模型。那么能否将这种类似YoutbueDNN的Deep Match的思想融入到Rank阶段的模型呢?答案是可以的,也就是本文要介绍的DMR模型(Deep Match to Rank)。
2、DMR模型介绍
DMR模型的整体结构如下:
咱们就按论文里的思路进行介绍,先介绍一下基础的模型,然后重点介绍图中的User-to-Item和Item-to-Item模块。