[4.10更新]推荐系统遇上深度学习(八十一)-[阿里]DMR:Matching和Ranking相结合的点击率预估模型...

本文详细介绍了Deep Match to Rank (DMR) 模型,一种结合匹配和排名的点击率预估模型,旨在提升推荐系统的个性化能力。DMR模型在Base Model基础上加入了User-to-Item和Item-to-Item网络,通过计算用户和物品之间的相关性,提高预测准确性和效率。实验证明,DMR模型在AUC指标上优于其他主流CTR预估模型。
摘要由CSDN通过智能技术生成

本文介绍的论文是《Deep Match to Rank Model for Personalized Click-Through Rate Prediction》。
论文下载地址是:https://github.com/lvze92/DMR

本文提出了一种将协同过滤思想融入Ranking阶段CTR预估模型的模型Deep Match to Rank(简称DMR),提升了模型的个性化能力,并取得了不错的实验效果,一起来学习下。

1、背景

推荐系统通常分为两个阶段,即召回和排序阶段。在召回阶段会对用户和物品进行匹配,得到较小的一部分候选集进入到排序阶段。在召回阶段,协同过滤方法是最常用来计算用户和物品相关性的方法。在排序阶段,排序模型会对候选集的每个物品进行打分,然后选取得分最高的N个物品推荐给用户。而打分最为常用的方式是预测用户对物品的点击率。因此,点击率预估也受到了学术界和工业界众多研究者的关注。而本文也重点关注点击率预估问题。

对于点击率预估问题,个性化是提升其效果的一个重要的方面。个性化的一个重要方面就是对用户兴趣的刻画,如之前提到过的DIN、DIEN、DSIN等模型。但是这些模型忽略了建模用户和物品之间的相关性。用户和物品之间的相关性,可以直接衡量用户对目标商品的偏好强度。(下文中用户和物品的相关性,咱们用U2I相关性来表示)

表征U2I相关性,主要有基于矩阵分解和基于深度学习的方法。基于深度学习的方法,如咱们比较熟悉的Youtube的DNN召回模型。那么能否将这种类似YoutbueDNN的Deep Match的思想融入到Rank阶段的模型呢?答案是可以的,也就是本文要介绍的DMR模型(Deep Match to Rank)。

2、DMR模型介绍

DMR模型的整体结构如下:

咱们就按论文里的思路进行介绍,先介绍一下基础的模型,然后重点介绍图中的User-to-Item和Item-to-Item模块。

2.1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值