- 博客(91)
- 收藏
- 关注
原创 Jetson 入门必看:JetPack 系统到底要不要烧录?新手也能看懂!
Ubuntu 系统(定制版)CUDA、cuDNN、TensorRT(用于 AI 推理加速)OpenCV、摄像头驱动、编解码库BSP(硬件支持包)Jetson 系列之所以强大,正是因为 JetPack 把 AI 所需的工具和驱动都集成在一起了。烧录,就是把 JetPack 系统安装到 Jetson 的内部存储(eMMC、NVMe、SD 卡)里,就像你给一台新电脑装 Windows 系统一样。
2025-05-23 17:05:15
716
原创 Jetson系统烧录与环境配置全流程详解(含驱动、GCC、.Net设置)
本文从系统烧录开始,到环境搭建、GCC、.Net 配置,再到摄像头驱动安装,覆盖了 Jetson 开发板常用的基础操作流程,适用于大多数国产主板 + 模块组合的新手开发者。Jetson平台摄像头图像采集、ISP调试与多路并发采集实战(基于 v4l2 + OpenCV)如需定制 Jetson 系统裁剪、定制部署、摄像头驱动适配等,也欢迎私信交流!
2025-05-23 17:02:44
1186
原创 使用 SiamMask 实现单目标逐帧跟踪与掩码中心提取
加载 SiamMask 模型与配置文件读取首帧标签并初始化跟踪器逐帧读取图像并执行提取目标掩码并计算其中心点输出每帧的目标中心坐标。
2025-05-15 18:21:27
78
原创 基于中心点预测的视觉评估与可视化流程
这段脚本提供了一个简单但实用的目标中心点评估与可视化框架。相比只依赖数值结果,图像级别的直观反馈更利于发现问题、调优模型。如果你正在调试跟踪模型,不妨试试把它接入你的 pipeline 中。
2025-05-15 18:11:42
189
原创 CUDA error: no kernel image is available for execution on the device 解决方案(适配 RTX 4090)
PyTorch 版本太旧,不支持新显卡(如 RTX 4090)升级 PyTorch 到 2.1.0+使用 cu118 编译版本(CUDA 11.8),兼容 Ada 架构若有 API 不兼容问题,适当修改 SiamMask 源码即可解决如果你也遇到相同问题,希望这篇博客能帮你少踩一点坑。如果有更多关于 SiamMask 或目标跟踪相关的问题,欢迎留言交流!
2025-05-14 14:50:53
730
原创 跑通官方 SiamMask Demo 全流程实战
完成以上 1 到 8 步,你即可在本地无缝跑通官方 SiamMask Demo,实现视频中目标的实时跟踪与像素级分割。后续可将其集成到更大系统或作为研究基线进行二次开发。祝你在视频跟踪与分割方向取得更多进展!
2025-05-07 15:12:53
64
原创 从增量式到绝对式 —— 深度理解编码器的原理与选型
17 bit 表示编码器在一圈内可以表示 (2^{17} = 131072) 个不同的位置。每个位置对应的角度分辨率是:角度分辨率360∘131072≈0.00275∘\text{角度分辨率} = \frac{360^\circ}{131072} \approx 0.00275^\circ角度分辨率131072360∘≈0.00275∘直观理解旋转一圈360度,被切成131072份,非常细腻。也就是说,它可以检测到关节转动0.00275°这样微小的变化。
2025-04-27 16:36:11
1119
原创 机器人核心硬件总览 —— 电机、减速器、驱动器与编码器
机器人运动的精度、速度与稳定性,最终都落在底层硬件的质量与匹配上。今天我们以通俗又具体的方式,系统梳理一下机器人执行机构的四大关键部件:电机、减速器、驱动器和编码器。
2025-04-27 16:29:36
1800
原创 如何实现跟踪+分割的高效协同?SiamMask中的多任务损失设计
本文是“Siam 系列网络深度解析”之六,聚焦SiamMask中分类、回归与Mask三项任务的损失函数设计与加权策略,解析多任务学习如何在跟踪+分割场景中实现高效协同。将目标跟踪(Tracking)与目标分割(Segmentation)融合在同一框架中,其核心在于对。Mask分支权重大多显著高于跟踪分支,因为像素级任务更难,梯度较弱,需要更强的信号。,既保证各自任务收敛,又能互补提升总体性能。注意:Mask Loss只对正样本框计算,减少无效负梯度。本文整理自“Siam系列网络深度解析”。
2025-04-24 11:52:11
771
原创 SiamMask中的Anchor机制详解:不是检测却保留了Anchor?
每个位置:预设KKK个Anchor(常见K5K=5K5),对应不同的长宽比和尺度。特征图尺寸:若搜索特征图为H×WH\times WH×W,总Anchor数为H×W×KH×W×K。
2025-04-24 11:48:11
543
原创 分类分支 vs Mask分支:为什么不能一个分支包办所有任务?
在SiamMask的设计中,分类分支(Classification Head)与Mask分支(Mask Head)分别承担“快速定位”与“精细分割”两大任务。尽管二者都执行二元分类(前景/背景),但在。本文是“Siam 系列网络深度解析”之四,聚焦探讨SiamMask中分类分支和Mask分支的本质差异,解析为何一个分支无法兼顾粗粒度定位与细粒度分割。若试图用分类分支上采样生成像素级掩膜,会发现性能和效果都远不如专门的Mask分支。本文将从多个维度深入剖析两者为何不能互为替代。(此处可插表/图展示对比曲线)
2025-04-24 11:46:48
864
原创 SiamMask中的分类分支、回归分支与Mask分支,有何本质差异?
本文是“Siam 系列网络深度解析”之三,重点对比并深入剖析SiamMask在跟踪与分割任务中,分类分支、回归分支和Mask分支的不同设计思路、网络结构与训练策略。SiamMask以多任务学习的方式,实现了目标跟踪(Tracking)与目标分割(Segmentation)的统一框架。三者分工明确、协同高效,共同构成了SiamMask的跟踪+分割能力。(此处可插入示意图:热力图、边框图、掩膜图)(Regression Head)和。,并且都执行二分类或回归操作,但在。
2025-04-24 11:44:02
958
原创 深入理解Depth-wise Cross-Correlation:轻量高效的特征匹配核心
最初的 SiamFC 直接对模板与搜索区域的特征图做普通交叉相关(cross-correlation),得出单通道响应图,但随着多通道特征和多任务需求的加入,这种“通道求和”的做法已经无法兼顾信息量与实时性。Depth-wise Cross-Correlation(DW-XCorr)应运而生:它既能保留每个通道的细粒度匹配信息,又能借助深度学习库中的 Group-Conv 高效实现,成为快速跟踪网络的必备利器。,它通过逐通道相关保留丰富语义信息,又借助 Group-Conv 在 GPU 上高效运行。
2025-04-24 11:09:52
984
原创 SiamMask原理详解:从SiamFC到SiamRPN++,再到多任务分支设计
从SiamFC到SiamRPN++,再到SiamMask,目标跟踪领域经历了从简单的模板匹配到引入anchor机制,再到多任务学习的演变。SiamMask通过结合目标跟踪和目标分割,极大地提高了目标跟踪的精度和鲁棒性,特别是在处理复杂场景下的目标时,能够提供更为细致和高效的跟踪能力。随着深度学习技术的发展,未来的目标跟踪网络可能会更加注重多任务的融合以及对多尺度、多形状目标的处理。SiamMask的成功为后续的相关研究提供了宝贵的经验和技术路径。
2025-04-24 11:03:29
1105
原创 多分类为何用二分类交叉熵?搞清楚“多分类”与“多标签分类”的本质区别!
场景输出结构激活函数损失函数多分类(互斥)1个 one-hot 向量softmax多标签分类 / 每类独立判断每类各预测一个概率sigmoid所以,目标检测、SiamRPN、SiamMask 等“多分类任务”之所以使用 BCE,是因为它们结构上是多标签判断,每个类别单独预测一个二分类概率!
2025-04-18 18:00:37
796
原创 SiamMask实战应用指南:从代码跑通到自定义测试的全过程
一、前言:为什么选择 SiamMask?二、环境配置与依赖安装1)克隆官方仓库2)环境依赖三、模型准备与权重下载四、代码跑通测试(官方视频/图片)五、自定义数据测试:支持图片序列和视频1)准备图片序列(帧图像)2)使用自定义视频3)修改初始化框(初始目标框)六、结果输出与可视化保存1)保存每一帧的分割结果2)保存可视化图像或视频七、常见报错及解决办法八、模型结构快速解析(方便调试)九、扩展建议与优化方向1)替换 backbone(如 MobileNet)2)加入光流或注意力模块。
2025-04-17 19:47:12
1098
原创 SiamMask原理详解:一文读懂它是如何实现目标分割与跟踪的
传统的目标跟踪算法大多以**边界框(Bounding Box)**为目标,随着 Siamese 网络的引入(如SiamFC、SiamRPN),跟踪效率大幅提升。只能框出目标,却无法准确“描边”目标。这在无人机识别、视频分析、自动驾驶等场景中,会导致检测不准确、误判等问题。为了解决这个问题,SiamMask横空出世。同时完成目标跟踪(tracking)与实例分割(instance segmentation)引入了分支结构,在不影响实时性的情况下,增加了一条分割分支提出了简单但高效的全卷积掩码预测模块。
2025-04-17 19:45:41
865
原创 C#中List的高级用法:从基础到实战技巧
List<T>不仅仅是“会用 Add 和 Remove”,在实时系统中,它是一个灵活、可扩展的轻量级数据容器。掌握FindIndexRemoveAllSortForEach等高级用法,可以大大提升你的代码表达力和运行效率。
2025-04-14 14:27:41
464
原创 List vs Dictionary 的使用场景详解:选对数据结构,代码效率翻倍
你关注的问题推荐数据结构顺序遍历,数据不大List快速查找、唯一索引Dictionary需要排序/分页List 或结合使用实时替换、去重Dictionary“数据结构选对了,代码自然就优雅了。如果你还在用 List 做所有事情,不妨试试把核心逻辑用 Dictionary 重构一下,性能和结构清晰度都会有显著提升!你还想看哪些集合类对比?.NET 容器性能全对比实测。
2025-04-14 14:26:04
623
原创 多坐标系变换全解析:从相机到WGS-84的空间坐标系详解
坐标系名称英文缩写原点单位轴定义常见用途WGS-84大地坐标系地球椭球面角度 + 米L:经度,A:纬度,H:高度GPS、地图、全球定位地心直角坐标系地球质心米X指经度0°赤道,Z指北极坐标变换中间体,轨道计算本地东-北-天坐标系ENU / NED任意参考点米东-北-天(或地)方向无人机导航、雷达跟踪平台坐标系平台中心米X前,Y右,Z下航空载荷、雷达、车载设备相机坐标系Camera相机光心像素或米X右,Y下,Z前(OpenCV标准)图像处理、3D重建、位姿估计。
2025-04-11 16:17:20
253
原创 PyTorch 模型转换为 TensorRT 引擎的通用方法
对于模型中的自定义层,可能需要编写自定义插件,以确保在 TensorRT 中的正确运行。
2025-04-11 16:11:50
496
原创 如何利用 TortoiseGit 建立一个自己的 Git 代码管理
本文详细介绍了如何利用 TortoiseGit 建立并管理一个 Git 版本库。从初始化仓库、添加代码、提交记录,到绑定远程仓库,各个步骤都做了详细说明。无论你是单独开发还是团队协作,使用 Git 都能帮助你更好地管理代码版本、追踪历史变更,还原错误修改以及提高代码协作效率。在实践过程中,如果遇到问题,可以查看 TortoiseGit 的官方文档或者在 CSDN、博客园等社区中搜索相关经验,很多高手已经总结了不少实用技巧。
2025-04-10 16:35:39
1056
原创 Git 拉取时常见冲突及解决方法总结
一、常见错误场景1. 本地修改与远程修改冲突解决方法2. 未跟踪文件与远程文件冲突解决方法3. 子模块权限问题解决方法二、总结在日常开发中,使用 Git 进行团队协作和代码管理时,经常会遇到拉取代码(git pull)时出现冲突问题。本文结合具体案例总结了几种常见问题及其解决方案,帮助你迅速应对冲突,保持代码仓库的健康。文件内容冲突:当本地和远程对同一文件都有修改时,可以选择丢弃本地改动、暂存修改或先行提交。未跟踪文件冲突:对于未被管理的文件,需在拉取前处理(删除、移动或添加到版本控制)。
2025-04-10 16:28:20
1284
原创 使用 Mapped Pinned Memory 优化 YOLOv10 TensorRT 推理速度:Zero-Copy 技术实战
通过避免显式的数据拷贝;显著降低延迟;提高推理帧率;是 Jetson 等设备部署高效推理模型的重要手段之一。如果你在使用 TensorRT 时遇到延迟瓶颈,不妨尝试这种优化方式,简单实用,收益巨大!
2025-04-09 13:36:03
68
原创 【PyTorch实战】用LSTM预测物体运动轨迹的二维坐标(附完整代码)
模型结构非常简洁:LSTM 后接一个线性层,输出二维坐标。self.linear = nn.Linear(hidden_size, 2) # 输出 x 和 y 坐标out = self.linear(out[:, -1, :]) # 取最后一个时间步输出return out本文演示了如何用 LSTM 网络预测二维轨迹点。虽然我们使用了简化的正余弦函数作为轨迹,但整个流程同样适用于真实的物体轨迹预测任务。替换为真实目标轨迹坐标,如手势轨迹、无人机飞行数据;加入速度或时间戳等辅助信息;
2025-04-09 13:32:56
712
原创 基于SiamFC的红外目标跟踪
初始化阶段:在第一帧中,通过用户标注获得目标框,从目标区域中提取一个固定大小的模板(称为 exemplar)。搜索阶段:在后续帧中,在以当前目标中心为中心的较大区域(称为 instance)内进行搜索,将模板与搜索区域通过卷积操作得到响应图。位置更新:在响应图中找到峰值位置,并转换到原图坐标,用以更新目标中心。部分实现中还会考虑多尺度搜索和目标尺寸更新。import cv2# 定义 SiamFC 简易网络(示例)# 特征提取部分,注意红外图像通常为单通道,使用较少的卷积核数提高实时性。
2025-04-09 09:41:06
461
原创 红外弱小目标检测与跟踪——进阶与融合
本系列文章将系统介绍进阶的红外弱小目标检测技术、跟踪算法以及两者结合的联合优化思路,同时附上部分代码实现示例,供工程实践与理论研究参考。虽然基于模板匹配的算法(如KCF、Siamese网络初期版本)在简单场景中表现良好,但面对红外图像低对比、目标易变形的问题,其鲁棒性受到限制。该系列文章旨在为从事红外检测和跟踪的科研人员与工程师提供详实的理论与实践参考,希望能进一步推动相关领域的技术进步和工程应用。通过孪生网络同时提取模板与当前帧的特征,比较相似性生成目标候选框,具有优秀的实时性能与鲁棒性。
2025-04-09 09:18:15
241
原创 YOLOv10预处理代码的实践经验总结
一、两种预处理实现方式概述1.1 第一种实现方式1.2 第二种实现方式二、对比和体会2.1 效率上的差异2.2 代码可维护性2.3 应用场景三、经验总结四、结语在部署YOLOv10检测模型时,图像预处理是整个推理流程的第一步。近期在项目中尝试了两种不同的预处理实现方式,本文总结了对比经验,介绍两种方法各自的思路、实现细节、性能表现以及对项目代码维护的影响。处理流程将输入图像从BGR转换为RGB。根据原图的尺寸构造一个正方形画布,先利用生成黑图,再乘以255获得全白背景;将原图复制到正方形的左上角。
2025-04-08 13:34:54
857
原创 YOLOv10在Jetson Orin NX上部署与CUDA推理流程解析
TensorRT部署时,尽可能使用GPU进行推理,Jetson Orin NX硬件支持强大,有效利用CUDA能带来显著加速。推理流程涉及内存申请、数据拷贝、流调度等CUDA基础操作,需理解其异步特性。实时应用中应注意内存复用、流复用、多线程管线等优化手段。示例代码中提供了完整的预处理、推理、后处理流程,可作为Jetson端部署YOLOv10的模板。如需进一步优化,可引入DMA图像采集、NVIDIA DLA调度、TensorRT INT8量化等高级技术,后续将继续介绍相关内容。欢迎关注!
2025-04-08 13:20:00
1024
原创 LightTrack + VOT2019 + Jetson 部署全流程指南【轻量级目标跟踪】
项目内容跟踪算法LightTrack(轻量化 NAS 跟踪器)数据集VOT2019(ST 子集)平台优势快速、轻量、适配工业部署场景评估指标。
2025-04-07 13:54:31
1187
原创 VOT2019 数据集介绍与下载使用全指南(含各子集说明)
📌 一、VOT2019 数据集简介🧩 二、VOT2019 子集区别详解🔽 三、如何下载 VOT2019 数据集?✅ 推荐方式:使用 VOT Toolkit 下载1️⃣ 克隆 Toolkit2️⃣ 安装依赖(推荐 MATLAB,Python 版本支持有限)3️⃣ 设置 VOT2019 数据集⚠️ 手动下载方式(不推荐但可行)🧪 四、与主流算法结合使用(如 LightTrack、OSTrack)⚙️ OSTRack、SiamFC、STARK 等🧠 五、Jetson 上使用建议✅ 六、总结。
2025-04-07 13:51:20
1145
原创 OSTrack 与 LightTrack 在 Jetson 上部署时的对比和注意事项
OSTrack 作为最新的跟踪器,凭借 Transformer 的优势在理论上能够提供更好的跟踪性能,但在 Jetson 这样的嵌入式平台上,能否发挥其优势取决于模型优化和硬件加速的程度。如果你有足够的时间和资源进行模型转换与优化,OSTrack 是一个有吸引力的选择;可以根据自己的项目需求和 Jetson 的资源状况,先试验优化后的 OSTrack,如果在性能和实时性上符合预期,再考虑长期使用;在 Jetson 部署时,选择哪个算法需要综合考虑模型的性能、计算复杂度和资源占用等因素。
2025-04-03 10:04:21
814
原创 研究下适合部署在jeston上的深度学习类单目标跟踪算法
单目标跟踪(Single Object Tracking, SOT)是计算机视觉中的核心任务,主要用于无人机、自动驾驶、智能监控等领域。✅ 适用于目标外观变化较大的场景,如光照变化、形变等。✅ 强大的目标建模能力,适用于长时间跟踪任务。✅ 适用于复杂环境,如低光照、背景干扰等情况。✅ 兼顾高精度与计算效率,适用于资源受限设备。✅ 适用于嵌入式部署,如 Jetson 平台。✅ 具有较好的自适应能力,适合复杂跟踪任务。✅ 目标定位精度较高,适用于小目标跟踪。✅ 适用于长时间跟踪任务,鲁棒性强。
2025-04-03 09:36:59
752
原创 使用 YOLOv10 生成预测标签文件的完整示例(predict时生成txt格式标签)
YOLOv10 是一款高效的目标检测模型,其predict()方法可以直接对输入图片或视频进行推理。默认情况下,该方法会返回一个Results列表,每个Results对象中包含了检测到的目标信息,例如边界框、类别、置信度等。然而,predict()方法并不会自动生成标签文件。本教程通过遍历Results并将检测结果写入.txt文件,解决这一需求。通过上述代码示例,你可以在调用 YOLOv10 的predict()方法后,将检测结果自动保存为标签文件。该方法灵活高效,便于对检测结果进行进一步处理。
2025-04-01 09:22:45
180
原创 Windows 连接 Jetson 失败的解决方案(SSH & Ping 超时)
仍然超时,但 Jetson 能访问 Windows,说明。如果 Windows 和 Jetson 处于不同子网(如。本文总结了可能的原因及对应的解决方案。按以上步骤操作后,Windows 应该能够。确认 Jetson 的 IP 地址是否是。连接互联网时,可能会遇到。,并确保它正确分配了 IP。,这可能与路由或防火墙有关。Jetson 可能开启了。如果仍然连接失败,可能是。
2025-03-27 09:58:22
921
原创 【git拉取冲突解决】Please move or remove them before you merge. Aborting
失败的原因是,本地存在未被 Git 跟踪的文件,而这些文件在远程仓库中有更新,Git 发现合并会覆盖这些文件,因此终止了操作。:这会删除所有未被 Git 跟踪的文件和目录,谨慎操作。目录,确认哪些文件应该保留或合并。可以根据自己的需求选择合适的方法。
2025-03-26 10:01:13
853
原创 迭代处理所有目录下的图像,按同样的结构保存到新目录下,图像处理方式是精简图像数量,每隔3张保存一张
下面是一个 Python 脚本,它会遍历指定的输入目录 (),并按每隔 3 张保存 1 张的方式进行精简处理。),按相同的目录结构,将图像保存到新目录 (变量来适配你的数据路径。
2025-03-24 11:02:13
154
原创 jeston orin nx部署yolov11-infor.cpp
引擎加载与构建检查是否存在序列化的 TensorRT 引擎文件,若存在则直接加载,否则通过解析 ONNX 模型构建引擎,并保存到文件中。预处理、推理和后处理对输入图像进行预处理(调整尺寸、颜色转换、归一化等),通过 TensorRT 进行推理,然后经过转置、解码及非极大值抑制得到最终检测结果,最后恢复检测框至原图尺度。结果绘制利用 OpenCV 将检测结果(边框、类别、置信度)绘制到图像上,方便可视化检测效果。
2025-03-18 08:27:32
115
预训练权重SiamMask-DAVIS.pth和SiamMask-VOT.pth
2025-05-07
yolov10n.pt转换得到的best.onnx,用于跨平台验证转engine是否成功,免去配环境的步骤
2025-04-16
基于caffe框架用于识别人脸,质心法实现跟踪,支持多人脸跟踪,包含配置文件deploy.prototxt和res10-300x
2022-12-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人