Supervised Learning
- 基本上是classification的代名词
- 从有标签的训练数据中学习模型,然后给定某个新数据,利用模型预测他的标签。
- 训练数据往往是人工给出的,在训练合集中,标签(即系统的预期输出)is known。 如果模型的实际输出与预期不符,那这个预期输出就有资格监督学习系统,重新调整模型参数,直到误差在可容忍的范围。素以标签又叫‘教室信号‘。
- 根据目标预测变量的类型不同,监督学习大可分为:回归分析和分类学习。
1. 回归分析: 实际上就是函数的拟合。 预测输入变量和输出变量之间的关系。如果按照输入变量的个数来分类,回归问题可以分为一元或者多元。如果按照变量关系来分类,回归问题可分为线性回归和非线性回归。
- “回归问题常用的函数的‘损失函数’是平方损失函数,在这种情况下,回归问题通常用最小二乘法(Least Squares Methods) 来求解” 这一句话没读懂哟~
- 回归分析主要包括linear regression 和 logistics regression。
2. 分类学习:分类学习的算法比较多,有k近邻,decision tree,naive bayes, etc.
K-Nearest Neighbor
给定某个待分类的测试样本,基于某种距离度量,找到训练集合中与其最近的k个训练量本。基于这些相近量本进行预测。预测策略通常采用投票法。可是这种少数服从多数也可能导致多数人的暴政。所以我们需要给不同的点不同的权重。
Unsupervised Learning
- 是cluster的近义词(聚类)
- 不同于分类,分类是根据数据的特征划分到已有的类别里。 而聚类一开始并不知道会有几个类别,而是通过聚类分析将数据聚成几个群。
- 在目前的深度学习中,最有前景的无监督学习算法是GenerativeAdversarial Network
K-Means Clustering
- 该算法时间复杂度较低。
- 聚类的关键是如何度量对象间的相似性。由聚类禅师说那个的cluster是一组数据对象的合集。它的特征是:同一个cluster中对象彼此相似,不同cluster彼此相异,且没有预先定义的类。
- 聚类分析四步:数据表示,聚类判据,聚类算法,和聚类评估。-
-
- 同一种聚类算法只能用一种数据表示
-
- 数据表示可分为外显和内在。
- 当cluster的划分不够明显的时候,Kmeansclustering comes into play
- kmeans clustering 是先选中心点,然后按照距离划分,然后再算平均值,然后再从新选择中心点,划分数据对象和cluster
- 这种方法需要一个固定的cluster个数k,用户需要给出这个数
- 而且只能划分出来球状cluster
- 这个对第一个中心点的依赖很高
- prone to noise 躁点影响很大
semi-supervised learning
既用到了标签数据,有用到了非标签数据。
首先有少量标签数据集,然后根据标签数据,对未知数据的标签做归类预测。
Reinforcement Learning
强调在一系列情境之下选择最佳决策,他将就通过多步恰当的决策,来逼近一个最优的目标。序列多步决策问题。
强化学习没有正确答案,而是在探索和tradeoff
他有:环境空间,状态空间,动作空间,和回报函数reward。如果某个动作作用于当前的状态上,那么潜在的装一函数将驱使环境从当前状态按照某种概率P,转移到另一个状态。