读书笔记: deep learning

Supervised Learning

  • 基本上是classification的代名词
  • 从有标签的训练数据中学习模型,然后给定某个新数据,利用模型预测他的标签。
  • 训练数据往往是人工给出的,在训练合集中,标签(即系统的预期输出)is known。 如果模型的实际输出与预期不符,那这个预期输出就有资格监督学习系统,重新调整模型参数,直到误差在可容忍的范围。素以标签又叫‘教室信号‘。
  • 根据目标预测变量的类型不同,监督学习大可分为:回归分析和分类学习。
    1. 回归分析: 实际上就是函数的拟合。 预测输入变量和输出变量之间的关系。如果按照输入变量的个数来分类,回归问题可以分为一元或者多元。如果按照变量关系来分类,回归问题可分为线性回归和非线性回归。
    - “回归问题常用的函数的‘损失函数’是平方损失函数,在这种情况下,回归问题通常用最小二乘法(Least Squares Methods) 来求解” 这一句话没读懂哟~
    - 回归分析主要包括linear regression 和 logistics regression。
    2. 分类学习:分类学习的算法比较多,有k近邻,decision tree,naive bayes, etc.

K-Nearest Neighbor

给定某个待分类的测试样本,基于某种距离度量,找到训练集合中与其最近的k个训练量本。基于这些相近量本进行预测。预测策略通常采用投票法。可是这种少数服从多数也可能导致多数人的暴政。所以我们需要给不同的点不同的权重。

Unsupervised Learning

  • 是cluster的近义词(聚类)
  • 不同于分类,分类是根据数据的特征划分到已有的类别里。 而聚类一开始并不知道会有几个类别,而是通过聚类分析将数据聚成几个群。
  • 在目前的深度学习中,最有前景的无监督学习算法是GenerativeAdversarial Network

K-Means Clustering

  • 该算法时间复杂度较低。
  • 聚类的关键是如何度量对象间的相似性。由聚类禅师说那个的cluster是一组数据对象的合集。它的特征是:同一个cluster中对象彼此相似,不同cluster彼此相异,且没有预先定义的类。
  • 聚类分析四步:数据表示,聚类判据,聚类算法,和聚类评估。-
    • 同一种聚类算法只能用一种数据表示
    • 数据表示可分为外显和内在。
  • 当cluster的划分不够明显的时候,Kmeansclustering comes into play
  • kmeans clustering 是先选中心点,然后按照距离划分,然后再算平均值,然后再从新选择中心点,划分数据对象和cluster
  • 这种方法需要一个固定的cluster个数k,用户需要给出这个数
  • 而且只能划分出来球状cluster
  • 这个对第一个中心点的依赖很高
  • prone to noise 躁点影响很大

semi-supervised learning

既用到了标签数据,有用到了非标签数据。
首先有少量标签数据集,然后根据标签数据,对未知数据的标签做归类预测。

Reinforcement Learning

强调在一系列情境之下选择最佳决策,他将就通过多步恰当的决策,来逼近一个最优的目标。序列多步决策问题。
强化学习没有正确答案,而是在探索和tradeoff
他有:环境空间,状态空间,动作空间,和回报函数reward。如果某个动作作用于当前的状态上,那么潜在的装一函数将驱使环境从当前状态按照某种概率P,转移到另一个状态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值