HDU 4777 Rabbit Kingdom
题意:给定一些序列,每次询问一个区间,求出这个区间和其他数字都互质的数的个数
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int INF = 0x3f3f3f3f;
typedef long long ll;
const ll N = 200005;
int n, m, vis[N], prime[N], pn = 0;
void getprime() {
for (ll i = 2; i < N; i++) {
if (vis[i]) continue;
prime[pn++] = i;
for (ll j = i * i; j < N; j += i)
vis[j] = 1;
}
}
vector<int> g[N];
void getfac(int i) {
g[i].clear();
int tmp;
scanf("%d", &tmp);
for (int j = 0; j < pn && prime[j] * prime[j] <= tmp; j++) {
if (tmp % prime[j] == 0) {
g[i].push_back(prime[j]);
while (tmp % prime[j] == 0) tmp /= prime[j];
}
}
if (tmp != 1) g[i].push_back(tmp);
}
int v[N], L[N], R[N], ans[N], bit[N];
struct Query {
int l, r, id;
} q[N];
bool cmp(Query a, Query b) {
return a.r < b.r;
}
#define lowbit(x) (x&(-x))
void add(int x, int v) {
if (x == 0) return;
while (x < N) {
bit[x] += v;
x += lowbit(x);
}
}
int get(int x) {
int ans = 0;
while (x) {
ans += bit[x];
x -= lowbit(x);
}
return ans;
}
int get(int l, int r) {
return get(r) - get(l - 1);
}
vector<int> sv[N];
int main() {
getprime();
while (~scanf("%d%d", &n, &m) && n) {
memset(v, 0, sizeof(v));
for (int i = 1; i <= n; i++) {
getfac(i);
int left = 0;
for (int j = 0; j < g[i].size(); j++) {
left = max(left, v[g[i][j]]);
v[g[i][j]] = i;
}
L[i] = left;
}
memset(v, INF, sizeof(v));
for (int i = n; i >= 1; i--) {
int right = n + 1;
for (int j = 0; j < g[i].size(); j++) {
right = min(right, v[g[i][j]]);
v[g[i][j]] = i;
}
R[i] = right;
}
for (int i = 0; i < m; i++) {
scanf("%d%d", &q[i].l, &q[i].r);
q[i].id = i;
}
for (int i = 1; i <= n; i++) sv[i].clear();
for (int i = 1; i <= n; i++) sv[R[i]].push_back(i);
sort(q, q + m, cmp);
memset(bit, 0, sizeof(bit));
int u = 1;
for (int i = 0; i < m; i++) {
while (u <= n && u <= q[i].r) {
add(L[u], 1);
for (int j = 0; j < sv[u].size(); j++) {
int pv = sv[u][j];
add(L[pv], -1);
add(pv, 1);
}
u++;
}
ans[q[i].id] = q[i].r - q[i].l + 1 - get(q[i].l, q[i].r);
}
for (int i = 0; i < m; i++)
printf("%d\n", ans[i]);
}
return 0;
}
思路:现处理出每个位置的Li,Ri表示最多向左向右能有多少是保持都互质的,然后把询问按右区间排序,从左往右每次加入该位置的左端点Li,每次询问就询问满足Li,Ri都包含在这个区间内,所以询问Li到Ri的个数代表不满足的个数,然后每次到一个端点,如果有之前位置的Ri是这个位置,那么就把那个位置的Li减掉,并且标记掉这个点已经不可能符合标记为1
代码: