❤️【独家】挑战全网最通俗易懂的神经网络的表达能力解释

本文探讨了神经网络中权重w和偏置项b如何影响输出函数的形状。当w增大,输出函数变得陡峭;b改变则影响函数的对称轴位置。随着神经元的增加,网络的表达能力增强,能拟合更复杂的函数。通过阈值分类或sigmoid等方法,可以对输入进行多类别划分。
摘要由CSDN通过智能技术生成

在这里插入图片描述

如上图所示,是初学者对于神经网络非线性表达能力最直观的印象图,输入为:x和1,激活函数为: y = 1 1 + e − ( w x + b ) \mathbf{y}=\frac{1}{1+\mathbf{e}^{-\left( \mathbf{wx}+\mathbf{b} \right)}} y=1+e(wx+b)1,然后输出为:y;而右图则是sigmoid函数的函数图像。

在这里插入图片描述

参见上图,让我们一步步来分析权重w对于输出函数y的影响:

  • 如果我们令b=0,并且我们的权重w取值为0.3,则我们的输出 y = 1 1 + e − 0.3 x \mathbf{y}=\frac{1}{1+\mathbf{e}^{-0.3\mathbf{x}}} y=1+e0.3x1,此时的输出函数y明显坡度变得更加“平缓”。
  • 如果我们令b=0,并且我们的权重w取值为3,则我们的输出 y = 1 1 + e 3 x \mathbf{y}=\frac{1}{1+\mathbf{e}^{3\mathbf{x}}} y=1+e3x1,此时的输出函数y明显坡度变得更加“陡峭”。
  • 但是,x=0,y=0.5的分界位置却未发生任何改变,由此,我们得到一个结论:在b=0的情况下,我们通过改变权重参数w能够改变输出函数y的“陡峭”或者“平缓”的速度。

在这里插入图片描述

此时,我们会疑惑,那么如果权重w不变,仅改变偏置项b,会发生什么呢?参见上图,分析偏置项b对于输出函数y的影响:

  • 如果我们令w=1,并且我们的偏置项b取值为-5,则我们的输出 y = 1 1 + e − ( x − 5 ) \mathbf{y}=\frac{1}{1+\mathbf{e}^{-\left( \mathbf{x}-5 \right)}} y=1+e(x5)1,此时的输出函数y=0.5的分界位置向右发生了移动。
  • 如果我们令w=1,并且我们的偏置项b取值为5,则我们的输出 y = 1 1 + e − ( x + 5 ) \mathbf{y}=\frac{1}{1+\mathbf{e}^{-\left( \mathbf{x}+5 \right)}} y=1+e(x+5)1,此时的输出函数y=0.5的分界位置向左发生了移动。
  • 但是,输出函数y的坡度却未发生任何变化,由此,我们得到一个结论:在w=1的情况下,我们通过改变偏置项b能够改变输出函数y=0.5的分界位置。

综上所述,我们得到了w和b对输出函数y影响关系的终极奥义o(▼皿▼メ;)o!

  • 改变权重参数w,即改变输出函数y的坡度(“平缓”/“陡峭”);改变偏置项b,即改变输出函数y=0.5的分界位置。
  • 如果通过改变权重参数w和偏置项b,那么我们的输出函数y就在x-y函数空间内“移动”了起来!

上面分析的是一个最初级神经网络的非线性拟合变化情况,那么如果两个及多个这样的初级神经元结构会是什么样子呢?

在这里插入图片描述

这里,我们给出了两个初级神经网络输入层结构的图示以及它们的输出函数图像:

在这里插入图片描述

在这里插入图片描述

那么问题来了,它们复合成多层更加复杂的神经网络结构会是什么样子呢?

在这里插入图片描述

此时,我们能够看到上面黑色的曲线,已经复合成了一个比较复杂的函数图像,那么它对应的表达能力来说,也是更强的,当我们的网络结构足够复杂的时候,我们的函数图像将会迎来它的表达能力的“巅峰”,如下图所示。

在这里插入图片描述

  • 假如我们采用阈值分类的方法,则输入x,我们会得到以下情况:

    -1<y=φ(x)<=-0.3,则x的分类结果为c=1。

    -0.3<y=φ(x)<=0.1,则x的分类结果为c=2。

    y=φ(x)>0.1,则x的分类结果为c=3。

  • 或者sigmoid这种分类方法的话,根据设定阈值分类即可。

  • 如果采用softmax也是同理,只需要针对其中某一个类别对应神经元的输出,计算出 y j = φ ( x j ) ∑ j = 1 φ ( x j ) \mathbf{y}_{\mathbf{j}}=\frac{\mathbf{\varphi }\left( \mathbf{x}_{\mathbf{j}} \right)}{\sum_{\mathbf{j}=1}{\mathbf{\varphi }\left( \mathbf{x}_{\mathbf{j}} \right)}} yj=j=1φ(xj)φ(xj),然后根据排序或者设定阈值分类即可。

  • 31
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 24
    评论
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Super__Tiger

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值