1119 机器人走方格 V2 (逆元,杨辉三角,数学)

本文介绍了一种计算机器人在M*N方格中从左上角到右下角的不同路径数量的算法。通过组合数学的方法,利用逆元求解在特定边界条件下的路径数量,并给出了一段C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基准时间限制:1 秒 空间限制:131072 KB 分值: 10  难度:2级算法题
 收藏
 关注
M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。
Input
第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000000)
Output
输出走法的数量 Mod 10^9 + 7。
Input示例
2 3
Output示例

3

AC:代码

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
#define Mod 1000000007
const int maxn = 2000003 ;
ll vis[maxn];
 
void init()
{
    vis[0] = 1;
    for(ll i = 1;i<maxn;i++) vis[i] = (vis[i-1]*i)%Mod;
}
ll e_gcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll ans = e_gcd(b,a%b,x,y);
    ll temp = x;
    x = y;
    y = temp-a/b*y;
    return ans;
}
ll inv(ll s)
{
    ll x,y;
    e_gcd(s,Mod,x,y);
    return (x+Mod)%Mod;
}
int main()
{
    ll a,b;
    init();
    scanf("%lld %lld",&a,&b);
    ll c,d;
    c = a+b-2;
    d = a -1;
    printf("%lld\n",(vis[c]%Mod*inv(vis[c-d])%Mod*inv(vis[d])%Mod));
    return 0;
}

### 关于离散数学中求逆元的方法 在离散数学中,模运算下的乘法逆元是一个重要的概念。如果整数 \( a \) 正整数 \( p \) 互质,则存在唯一的整数 \( b \),使得: \[ (a \cdot b) \mod p = 1 \] 其中 \( b \) 被称为 \( a \) 模 \( p \) 的乘法逆元。 #### 方法一:扩展欧几里得算法 扩展欧几里得算法是一种高效计算模逆元的方法。该方法的核心是利用贝祖定理(Bézout's identity),即对于任意两个整数 \( a \) \( p \),若它们的最大公约数为 1,则存在整数 \( x \) \( y \),使: \[ a \cdot x + p \cdot y = \gcd(a, p) = 1 \] 此时,\( x \) 即为 \( a \) 模 \( p \)逆元。以下是具体实现过程: ```python def extended_gcd(a, p): if a == 0: return (p, 0, 1) gcd, x1, y1 = extended_gcd(p % a, a) x = y1 - (p // a) * x1 y = x1 return gcd, x, y def mod_inverse(a, p): gcd, x, _ = extended_gcd(a, p) if gcd != 1: raise ValueError(f"No modular inverse exists for {a} modulo {p}") else: return x % p ``` 上述代码实现了扩展欧几里得算法,并返回 \( a \) 模 \( p \)逆元[^1]。 --- #### 方法二:费马小定理 当 \( p \) 是素数时,可以使用费马小定理快速计算逆元。根据费马小定理,有: \[ a^{p-1} \equiv 1 \ (\text{mod}\ p) \] 因此, \[ a^{-1} \equiv a^{p-2} \ (\text{mod}\ p) \] 可以通过快速幂算法有效计算 \( a^{p-2} \mod p \): ```python def fast_pow(base, exp, mod): result = 1 base %= mod while exp > 0: if exp & 1: result = (result * base) % mod base = (base * base) % mod exp >>= 1 return result def fermat_mod_inverse(a, p): if a < 0 or a >= p: a %= p return fast_pow(a, p - 2, p) ``` 此方法适用于 \( p \) 为素数的情况[^3]。 --- #### 示例分析 假设需要求解 \( a = 7 \), \( p = 13 \) 下的逆元: - 使用 **扩展欧几里得算法** 计算得到 \( 7^{-1} \equiv 10 \ (\text{mod}\ 13) \)。 - 使用 **费马小定理** 计算同样得出 \( 7^{-1} \equiv 10 \ (\text{mod}\ 13) \)。 验证结果: \[ (7 \times 10) \mod 13 = 70 \mod 13 = 1 \] --- ### 特殊情况说明 1. 若 \( a \) \( p \) 不互质,则不存在模逆元2. 当 \( a = 1 \) 或 \( a = p-1 \) 时,可以直接判断其逆元分别为 \( 1 \) \( p-1 \)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值