题意:在一个冰面网格板上,有空白处(无障碍),和障碍块,有一个小石头,给定其起点和终点,求从起点到终点的最小步数
规则:小石头不能在障碍区运动,一旦从某一方向开始运动,不会改变方向,也不会停止,除非碰到障碍物或到达终点才会停止,这为一步。若碰到障碍物,小石头将停在障碍物的旁边,被碰到的一个障碍物将消失。
输入:1代表障碍物(不可到达),0代表空白区,2,代表起点,3代表终点
输出:若小石头能到达终点,且步数最多为十步,输出最小步数,否则输出-1.
思路:dfs+回溯
要确定小石头是运动还是静止状态,若为静止,旁边为障碍区,是不能走的,并且当开始小石头运动,到接下来第一次停止为一步,期间方向没改变,只有停止后才能改变运动方向,因此dfs时要确定小石头的运动状态和方向.
剪枝:因为步数不能超过10,可以以此作为剪枝条件
#include<stdio.h>
int m,n,a[21][21],min;
int x[4]={-1,1,0,0},y[4]={0,0,-1,1};
void dfs(int i,int j,int step,int dir,int sta,int flag)
{ //step表示当前步数,dir运动方向,sta运动状态,flag是否消除障碍
int k,r,c;
if(step>10) //剪枝,步数不能超过10
return ;
if(a[i][j]==3){ //到达终点,若步数比最小步数小,更新最小步数
if(step<min)
min=step;
return ;
}
if(flag){ // flag为1时,消除小石头碰撞的一个障碍块
r=i+x[dir];
c=j+y[dir];
a[r][c]=0;
}
if(!sta){ //静止时
for(k=0;k<4;k++){
r=i+x[k];
c=j+y[k];
if(r>=1&&r<=n&&c>=1&&c<=m&&a[r][c]!=1) //判断边界
dfs(r,c,step+1,k,1,0);
}
}
else{ //运动时 方向不变
r=i+x[dir];
c=j+y[dir];
if(r>=1&&r<=n&&c>=1&&c<=m){ //判断边界
if(a[r][c]!=1)
dfs(r,c,step,dir,1,0);
else //当碰到障碍物,停止运动,状态sta变为0,下一步要消除障碍,变为1
dfs(i,j,step,dir,0,1);
}
else //若下一步超出边界,则不能再继续运动
return ;
}
if(flag){
r=i+x[dir];
c=j+y[dir];
a[r][c]=1;
}
return ;
}
int main()
{
int i,j,r,c;
while(scanf("%d%d",&m,&n)!=EOF){
if(m==0&&n==0)
break;
for(i=1;i<=n;i++)
for(j=1;j<=m;j++){
scanf("%d",&a[i][j]);
if(a[i][j]==2){ //找到起点
r=i;
c=j;
}
}
min=11; //因为最小步数不可能超过10,可将其初始化为11
dfs(r,c,0,0,0,0);
if(min==11)
min=-1;
printf("%d\n",min);
}
return 0;
}