hdu 2833 WuKong(floyd变形)

WuKong

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1697    Accepted Submission(s): 623


Problem Description
Liyuan wanted to rewrite the famous book “Journey to the West” (“Xi You Ji” in Chinese pinyin). In the original book, the Monkey King Sun Wukong was trapped by the Buddha for 500 years, then he was rescued by Tang Monk, and began his journey to the west. Liyuan thought it is too brutal for the monkey, so he changed the story:

One day, Wukong left his home - Mountain of Flower and Fruit, to the Dragon   King’s party, at the same time, Tang Monk left Baima Temple to the Lingyin Temple to deliver a lecture. They are both busy, so they will choose the shortest path. However, there may be several different shortest paths between two places. Now the Buddha wants them to encounter on the road. To increase the possibility of their meeting, the Buddha wants to arrange the two routes to make their common places as many as possible. Of course, the two routines should still be the shortest paths.

Unfortunately, the Buddha is not good at algorithm, so he ask you for help.
 

Input
There are several test cases in the input. The first line of each case contains the number of places N (1 <= N <= 300) and the number of roads M (1 <= M <= N*N), separated by a space. Then M lines follow, each of which contains three integers a b c, indicating there is a road between place a and b, whose length is c. Please note the roads are undirected. The last line contains four integers A B C D, separated by spaces, indicating the start and end points of Wukong, and the start and end points of Tang Monk respectively. 

The input are ended with N=M=0, which should not be processed.
 

Output
Output one line for each case, indicating the maximum common points of the two shortest paths.
 

Sample Input
6 6 1 2 1 2 3 1 3 4 1 4 5 1 1 5 2 4 6 3 1 6 2 4 0 0
 

Sample Output
3 Hint: One possible arrangement is (1-2-3-4-6) for Wukong and (2-3-4) for Tang Monk. The number of common points are 3.
题意:给出悟空的起点和终点和唐僧的起点和终点,两个人都必须走最短路(可能存在多条),现在问你,两个人最多相遇多长的距离。

思路:用floyd可以求出最短路径上满足两个点之间某个性质的解,这里我们可以求出两点之间最短路径上的最多条数。

而且我们可以知道,因为两个人都必须走最短路,所以他们两个人有且只有一次相遇的机会。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
#define N 500
#define INF 9999999
int dp[N][N],d[N][N];
int n,m;
void init()
{
    for(int i=1; i<=n; i++)
        for(int j=1; j<=n; j++)
            d[i][j]= i==j?0:INF;
    for(int i=1; i<=n; i++) dp[i][i]=1;
}
void floyd()
{
    for(int k=1; k<=n; k++)
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
            {
                if(d[i][j]>d[i][k]+d[k][j])
                {
                    dp[i][j]=dp[i][k]+dp[k][j]-1;
                    d[i][j]=d[i][k]+d[k][j];
                }
                else if(d[i][j]==d[i][k]+d[k][j])
                    dp[i][j]=max(dp[i][j],dp[i][k]+dp[k][j]-1);
            }
}
int solve(int ws,int we,int ts,int te)
{
    int ans=0;
    for(int i=1; i<=n; i++)
        for(int j=1; j<=n; j++)
            if(d[ws][i]+d[i][j]+d[j][we]==d[ws][we]&&d[ts][i]+d[i][j]+d[j][te]==d[ts][te])
                ans=max(ans,dp[i][j]);
    return ans;
}
int main()
{
    int u,v,w;
    int ws,we,ts,te;
    while(~scanf("%d %d",&n,&m)&&n)
    {
        init();
        for(int i=0; i<m; i++)
        {
            scanf("%d %d %d",&u,&v,&w);
            if(u==v) continue;
            if(w<d[u][v]) d[u][v]=d[v][u]=w;
            dp[u][v]=dp[v][u]=2;
        }
        scanf("%d %d %d %d",&ws,&we,&ts,&te);
        floyd();
        printf("%d\n",solve(ws,we,ts,te));
    }
    return 0;
}



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/acm_cxq/article/details/51536196
文章标签: ACM HDU
个人分类: 图论-最短路
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

hdu 2833 WuKong(floyd变形)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭