hdu 1869 六度分离(floyd)

六度分离

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7711    Accepted Submission(s): 3146


Problem Description
1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。 

Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
 

Input
本题目包含多组测试,请处理到文件结束。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
 

Output
对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。
 

Sample Input
  
  
8 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0
 

Sample Output
  
  
Yes Yes
题意:中文题不解释

思路:直接用floyd跑出两两之间的最短距离,然后判断是否存在>7的即可

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 210
#define INF 99999999
int ma[N][N];
int check(int n)
{
    for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
            if(i!=j)
            if(ma[i][j]>7) return 0;
    return 1;
}
int main()
{
    int n,m;
    int s,t;
    while(~scanf("%d %d",&n,&m))
    {
        for(int i=0; i<=n; i++)
            for(int j=0; j<=n; j++)
                    {
                        if(i==j) ma[i][j]=0;
                        else ma[i][j]=INF;
                    }
        for(int i=1; i<=m; i++)
        {
            scanf("%d %d",&s,&t);
            ma[s][t]=ma[t][s]=1;
        }
        for(int k=0; k<n; k++)
            for(int i=0; i<n; i++)
                for(int j=0; j<n; j++)
                    ma[i][j]=min(ma[i][j],ma[i][k]+ma[k][j]);
        int ans=check(n);
        if(ans) printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值