BAPC2014 K题 Key to Knowledge(中途相遇法,hash,状态压缩)

题意:n个学生和m道选择题,每个学生有关于m个选择题的答案,表示为一个字符串,1位√ 0位X,后面给一个老师给的对了几个答案

现在给你n个学生的答案,问,一共有多少种可能的答案,如果只有一个答案输出解

思路:一开始是直接暴力,当然TLE。当时没想到更好的办法了...后面看了别人写的题解是中途相遇法才恍然大悟,很巧妙。把一个 串分成两个串,前面一半部分的结果放在hash里面,然后再去枚举后面一半部分的所有状态即可。

具体可以看代码

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
int n,m;
struct Node
{
    char op[35];
    int k;
} p[15];
map<long long,int>mp;
long long h[1<<16];
void solve()
{
    mp.clear();
    for(int i=0; i<(1<<(m/2)); i++)
    {
        long long x=0;
        for(int j=0; j<n; j++)
        {
            int num=p[j].k;
            for(int k=0; k<m/2; k++)
                if(((i>>k)&1)==(p[j].op[k]=='1'))
                    num--;
            if(num<0)
            {
                x=-1;
                break;
            }
            x=x*(m+1)+num;
        }
        if(x==-1) continue;
        h[i]=x;
        mp[x]++;
    }
    int cnt=0,ans;
    for(int i=0; i<(1<<(m-m/2)); i++)
    {
        long long x=0;
        for(int j=0; j<n; j++)
        {
            int num=0;
            for(int k=m/2; k<m; k++)
                if(((i>>(k-m/2))&1)==(p[j].op[k]=='1'))
                    num++;
            x=x*(m+1)+num;
        }
        if(!cnt&&mp[x]>0)
        {
            for(int j=0; j<(1<<(m/2)); j++)
                if(h[j]==x)
                    ans=j+(i<<(m/2));///记得加括号
        }
        cnt+=mp[x];
    }
    if(cnt!=1) printf("%d solutions\n",cnt);
    else
    {
        for(int i=0; i<m; i++)
            printf("%d",(ans>>i)&1);
        printf("\n");
    }
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d %d",&n,&m);
        for(int i=0; i<n; i++)
            scanf("%s %d",p[i].op,&p[i].k);
        solve();
    }
    return 0;
}





BAPC(Bayesian Age-Period-Cohort)预测模型是一种统计模型,它用于分析和预测在考虑年龄、时期和队列效应影响下的数据。这种模型特别适用于人口学、流行病学和市场营销等领域,其中数据受到这些时间相关因素的影响。BAPC模型通常通过贝叶斯方来实现,利用贝叶斯推断来估计模型参数。 在R语言中,可以使用不同的包来实现BAPC模型,比如`apc`或`BAMP`。但是,R中并没有一个专门叫做BAPC的包。以下是一个简单的例子,演示如何使用`apc`包进行年龄-时期-队列模型的分析。请注意,这里仅提供了代码的一个基本框架,你可能需要根据自己的具体数据和研究目的进行适当的调整。 ```R # 安装并加载apc包 install.packages("apc") library(apc) # 假设你有一个名为data的数据框,其中包含以下列: # year: 年份 # age: 年龄 # count: 每一年每个年龄组的计数数据 # age.group: 年龄分组变量 # 使用apc包中的函数来拟合模型 # apc_fit 是模型拟合对象 apc_fit <- apc模型拟合函数(data$year, data$age, data$count) # 查看模型结果 summary(apc_fit) # 进行预测 # predict函数中的newdata需要包含你想要预测的年份、年龄和队列信息 predictions <- predict(apc_fit, newdata=你的新数据框) # 打印预测结果 print(predictions) ``` 请记住,上述代码仅为示例,并不代表实际可用的代码。在实际应用中,需要根据数据的具体情况和分析需求来选择和调整合适的统计模型和分析方
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值