一、N的因子的个数和因子的和
1、因子个数
公式:
解释
对于一个p来说都有(x+1)种选择, 由高中数学组合数可知总情况为每个p的选择数的乘积。
优化: 一个数的最大素数肯定不会超过sqrt(n)。x>1时指的是,让自己只能被自己整除时的情况,这时x=1,则需要成(x+1)=2;
代码:
#include <bits/stdc++.h>
using namespace std;
int fx(int x)
{
int a = 0, re = 1;
for (int i = 2; i * i <= x; i++)
{
a = 0;
while (x % i == 0)
{
++a;
x /= i;
}
re *= (a + 1);
}
return x > 1 ? re * 2 : re;
}
int main()
{
ios::sync_with_stdio(false);
int n;
cin >> n;
cout << fx(n) << endl;
return 0;
}
素因子分解法优化代码:线性素数筛+素因子分解法
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const int maxn = 1e6;
int prime[maxn + 5];
bool vis[maxn + 5];
int cnt;
void init() //线性筛
{
vis[0] = vis[1] = 1;
for (int i = 2; i <= maxn; i++)
{
if (vis[i] == 0)
prime[++cnt] = i;
for (int j = 1; j <= cnt && prime[j] * i <= maxn; j++)
{
vis[prime[j] * i] = 1;
if (i % prime[j] == 0)
break;
}
}
}
int fx(int x) //唯一分解定理
{
int ans = 1;
for (int i = 1; prime[i] * prime[i] <= x; i++)
{
int a = 0;
while (x % prime[i] == 0)
{
x /= prime[i];
++a;
}
ans = ans * (a + 1);
}
if (x > 1)
ans *= 2;
return ans;
}
int main()
{
ios::sync_with_stdio(false);
int n;
init();
while (cin >> n)
{
cout << fx(n) << endl;
}
return 0;
}
2、因子和
公式:
代码:
#include <bits/stdc++.h>
using namespace std;
int fx(int x)
{
int re = 1;
for (int i = 2; i * i <= x; i++)
{
int a = 1;
while (x % i == 0)
{
x /= i;
a *= i;
}
re = re * (a * i - 1) / (i - 1);
}
return x > 1 ? re * (x + 1) : re;
}
int main()
{
ios::sync_with_stdio(false);
int n;
cin >> n;
cout << fx(n) << endl;
return 0;
}
素因子分解优化代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const int maxn = 1e6;
int prime[maxn + 5];
bool vis[maxn + 5];
int cnt;
void init() //线性筛
{
vis[0] = vis[1] = 1;
for (int i = 2; i <= maxn; i++)
{
if (vis[i] == 0)
prime[++cnt] = i;
for (int j = 1; j <= cnt && prime[j] * i <= maxn; j++)
{
vis[prime[j] * i] = 1;
if (i % prime[j] == 0)
break;
}
}
}
int fx(int x) //唯一分解定理
{
int ans = 1;
for (int i = 1; prime[i] * prime[i] <= x; i++)
{
int a = 1;
while (x % prime[i] == 0)
{
x /= prime[i];
a *= prime[i];
}
ans = ans * (a * prime[i] - 1) / (prime[i] - 1); //等比数列求和公式,首项为一
}
if (x > 1)
ans = ans * (x + 1);
return ans;
}
int main()
{
ios::sync_with_stdio(false);
int n;
init();
while (cin >> n)
{
cout << fx(n) << endl;
}
return 0;
}
二、N!因子的个数和因子的和。
1、因子的个数
公式
p为n的素数
fx( p )=[ n / p ] + [ n / p² ] + [ n / p³ ] + ……
思考
- N!的最大质因子不会超过N。
- N的质因子并不完全包括N!的质因子。
步骤
先找出N的所有质数p,然后分别求出fx( p )。ans=(fx(p1)+1) * (fx(p2)+1) * …(fx(pn)+1)。
代码
#include <bits/stdc++.h>
using namespace std;
map<int, bool> vis;
vector<int> num;
void E_sushu(int n)
{
for (int i = 2; i * i <= n; i++)
if (vis.count(i) == 0)
{
for (int j = i * i; j <= n; j += i)
vis[j] = 1;
}
for (int i = 2; i <= n; i++)
if (vis.count(i) == 0)
num.push_back(i);
}
int fx(int n, int p)
{
int re = 0;
while (n)
{
re += (n /= p);
}
return re;
}
int main()
{
ios::sync_with_stdio(false);
int n, ans = 1;
cin >> n;
E_sushu(n);
for (vector<int>::iterator iter = num.begin(); iter != num.end(); ++iter)
ans *= (fx(n, *iter) + 1);
cout << ans << endl;
return 0;
}
三、求特定式子因子的个数
找出最大的数max,然后跟上面的方法一样。