数论——因子

一、N的因子的个数和因子的和

1、因子个数

公式:
在这里插入图片描述
在这里插入图片描述
解释
对于一个p来说都有(x+1)种选择, 由高中数学组合数可知总情况为每个p的选择数的乘积。
优化: 一个数的最大素数肯定不会超过sqrt(n)。x>1时指的是,让自己只能被自己整除时的情况,这时x=1,则需要成(x+1)=2;
代码:

#include <bits/stdc++.h>
using namespace std;
int fx(int x)
{
    int a = 0, re = 1;
    for (int i = 2; i * i <= x; i++)
    {
        a = 0;
        while (x % i == 0)
        {
            ++a;
            x /= i;
        }
        re *= (a + 1);
    }
    return x > 1 ? re * 2 : re;
}
int main()
{
    ios::sync_with_stdio(false);
    int n;
    cin >> n;
    cout << fx(n) << endl;
    return 0;
}

素因子分解法优化代码:线性素数筛+素因子分解法

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const int maxn = 1e6;

int prime[maxn + 5];
bool vis[maxn + 5];
int cnt;
void init() //线性筛
{
    vis[0] = vis[1] = 1;
    for (int i = 2; i <= maxn; i++)
    {
        if (vis[i] == 0)
            prime[++cnt] = i;
        for (int j = 1; j <= cnt && prime[j] * i <= maxn; j++)
        {
            vis[prime[j] * i] = 1;
            if (i % prime[j] == 0)
                break;
        }
    }
}

int fx(int x) //唯一分解定理
{
    int ans = 1;
    for (int i = 1; prime[i] * prime[i] <= x; i++)
    {
        int a = 0;
        while (x % prime[i] == 0)
        {
            x /= prime[i];
            ++a;
        }
        ans = ans * (a + 1);
    }
    if (x > 1)
        ans *= 2;
    return ans;
}

int main()
{
    ios::sync_with_stdio(false);
    int n;
    init();
    while (cin >> n)
    {
        cout << fx(n) << endl;
    }
    return 0;
}

2、因子和

公式:在这里插入图片描述
在这里插入图片描述
代码:

#include <bits/stdc++.h>
using namespace std;
int fx(int x)
{
    int re = 1;
    for (int i = 2; i * i <= x; i++)
    {
        int a = 1;
        while (x % i == 0)
        {
            x /= i;
            a *= i;
        }
        re = re * (a * i - 1) / (i - 1);
    }
    return x > 1 ? re * (x + 1) : re;
}
int main()
{
    ios::sync_with_stdio(false);
    int n;
    cin >> n;
    cout << fx(n) << endl;
    return 0;
}

素因子分解优化代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const int maxn = 1e6;

int prime[maxn + 5];
bool vis[maxn + 5];
int cnt;
void init() //线性筛
{
    vis[0] = vis[1] = 1;
    for (int i = 2; i <= maxn; i++)
    {
        if (vis[i] == 0)
            prime[++cnt] = i;
        for (int j = 1; j <= cnt && prime[j] * i <= maxn; j++)
        {
            vis[prime[j] * i] = 1;
            if (i % prime[j] == 0)
                break;
        }
    }
}

int fx(int x) //唯一分解定理
{
    int ans = 1;
    for (int i = 1; prime[i] * prime[i] <= x; i++)
    {
        int a = 1;
        while (x % prime[i] == 0)
        {
            x /= prime[i];
            a *= prime[i];
        }
        ans = ans * (a * prime[i] - 1) / (prime[i] - 1); //等比数列求和公式,首项为一
    }
    if (x > 1)
        ans = ans * (x + 1);
    return ans;
}

int main()
{
    ios::sync_with_stdio(false);
    int n;
    init();
    while (cin >> n)
    {
        cout << fx(n) << endl;
    }
    return 0;
}

二、N!因子的个数和因子的和。

1、因子的个数

公式
p为n的素数
fx( p )=[ n / p ] + [ n / p² ] + [ n / p³ ] + ……
思考

  1. N!的最大质因子不会超过N。
  2. N的质因子并不完全包括N!的质因子。
    步骤
    先找出N的所有质数p,然后分别求出fx( p )。ans=(fx(p1)+1) * (fx(p2)+1) * …(fx(pn)+1)。
    代码
#include <bits/stdc++.h>
using namespace std;
map<int, bool> vis;
vector<int> num;
void E_sushu(int n)
{
    for (int i = 2; i * i <= n; i++)
        if (vis.count(i) == 0)
        {
            for (int j = i * i; j <= n; j += i)
                vis[j] = 1;
        }
    for (int i = 2; i <= n; i++)
        if (vis.count(i) == 0)
            num.push_back(i);
}
int fx(int n, int p)
{
    int re = 0;
    while (n)
    {
        re += (n /= p);
    }
    return re;
}
int main()
{
    ios::sync_with_stdio(false);
    int n, ans = 1;
    cin >> n;
    E_sushu(n);
    for (vector<int>::iterator iter = num.begin(); iter != num.end(); ++iter)
        ans *= (fx(n, *iter) + 1);
    cout << ans << endl;
    return 0;
}

三、求特定式子因子的个数

找出最大的数max,然后跟上面的方法一样。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值