考研路茫茫——空调教室
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
众所周知,HDU的考研教室是没有空调的,于是就苦了不少不去图书馆的考研仔们。Lele也是其中一个。而某教室旁边又摆着两个未装上的空调,更是引起人们无限YY。
一个炎热的下午,Lele照例在教室睡觉的时候,竟然做起了空调教室的美梦。
Lele梦到学校某天终于大发慈悲给某个教室安上了一个空调。而且建造了了M条通气管道,让整个教学楼的全部教室都直接或间接和空调教室连通上,构成了教室群,于是,全部教室都能吹到空调了。
不仅仅这样,学校发现教室人数越来越多,单单一个空调已经不能满足大家的需求。于是,学校决定封闭掉一条通气管道,把全部教室分成两个连通的教室群,再在那个没有空调的教室群里添置一个空调。
当然,为了让效果更好,学校想让这两个教室群里的学生人数尽量平衡。于是学校找到了你,问你封闭哪条通气管道,使得两个教室群的人数尽量平衡,并且输出人数差值的绝对值。
一个炎热的下午,Lele照例在教室睡觉的时候,竟然做起了空调教室的美梦。
Lele梦到学校某天终于大发慈悲给某个教室安上了一个空调。而且建造了了M条通气管道,让整个教学楼的全部教室都直接或间接和空调教室连通上,构成了教室群,于是,全部教室都能吹到空调了。
不仅仅这样,学校发现教室人数越来越多,单单一个空调已经不能满足大家的需求。于是,学校决定封闭掉一条通气管道,把全部教室分成两个连通的教室群,再在那个没有空调的教室群里添置一个空调。
当然,为了让效果更好,学校想让这两个教室群里的学生人数尽量平衡。于是学校找到了你,问你封闭哪条通气管道,使得两个教室群的人数尽量平衡,并且输出人数差值的绝对值。
Input
本题目包含多组数据,请处理到文件结束。
每组测试第一行包含两个整数N和M(0<N<=10000,0<M<20000)。其中N表示教室的数目(教室编号从0到N-1),M表示通气管道的数目。
第二行有N个整数Vi(0<=Vi<=1000),分别代表每个教室的人数。
接下来有M行,每行两个整数Ai,Bi(0<=Ai,Bi<N),表示教室Ai和教室Bi之间建了一个通气管道。
每组测试第一行包含两个整数N和M(0<N<=10000,0<M<20000)。其中N表示教室的数目(教室编号从0到N-1),M表示通气管道的数目。
第二行有N个整数Vi(0<=Vi<=1000),分别代表每个教室的人数。
接下来有M行,每行两个整数Ai,Bi(0<=Ai,Bi<N),表示教室Ai和教室Bi之间建了一个通气管道。
Output
对于每组数据,请在一行里面输出所求的差值。
如果不管封闭哪条管道都不能把教室分成两个教室群,就输出"impossible"。
如果不管封闭哪条管道都不能把教室分成两个教室群,就输出"impossible"。
Sample Input
4 3 1 1 1 1 0 1 1 2 2 3 4 3 1 2 3 5 0 1 1 2 2 3
Sample Output
0 1
Author
linle
/*
题解:
首先,很容易想到用Tarjan求图中是否有桥,
如果没有桥则输出impossible
如果有桥,对原来的图进行缩点,建边,形成了一个新的图,该图必定无环(为树)
接下来是利用一个简单的树形dp,对树中的每个节点维护他的子树下的房间人数和
那么如果切断他和他祖先相连的边,则差值为abs(2*他子树的房间人数-总人数)
不停维护他的子树就可以了
*/
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <queue>
#include <vector>
using namespace std;
const int MAXN = 10010;
const int MAXM = 40100;
struct Edge
{
int to,next;
bool cut;
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~block
int Index,top;
int block;
bool Instack[MAXN];
int count_num[MAXN];
int bridge;
vector<int>vec[MAXN];
int vis[MAXN];
int a[MAXN],num[MAXN],all;
int ans;
void addedge(int u,int v)
{
edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut = false;
head[u] = tot++;
}
void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
int pre_cnt=0;//处理重边,如果不需要可以去掉
for(int i = head[u];i != -1;i = edge[i].next)
{
v = edge[i].to;
if( v == pre &&pre_cnt==0){
pre_cnt++;
continue;
}
if( !DFN[v] )
{
Tarjan(v,u);
if(Low[u] > Low[v])Low[u] = Low[v];
if(Low[v] > Low[u])
{
bridge++;
edge[i].cut = true;
edge[i^1].cut = true;
}
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
block++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = block;
count_num[block]+=a[v];
}
while( v != u );
}
}
void init()
{
tot = 0;
all=0;
memset(head,-1,sizeof(head));
}
void dfs(int u){
vis[u]=1;
for(int i=0;i<vec[u].size();i++){
int v=vec[u][i];
if(vis[v]==1)
continue;
dfs(v);
count_num[u]+=count_num[v];
}
ans=min(ans,abs(count_num[u]-(all-count_num[u])));
}
void solve(int N)
{
memset(DFN,0,sizeof(DFN));
memset(count_num,0,sizeof(count_num));
memset(Belong,0,sizeof(Belong));
memset(vis,0,sizeof(vis));
memset(Instack,false,sizeof(Instack));
Index = top = block = 0;
ans=1000000000;
for(int i = 1;i <= N;i++)
if(!DFN[i])
Tarjan(i,-1);
for(int i = 1;i <= block;i++)
vec[i].clear();
int flag=0;
for(int u = 1;u <= N;u++){
for(int i = head[u];i != -1;i = edge[i].next)
if(edge[i].cut&&(Belong[u]!=Belong[edge[i].to])) //不加Belong[u]!=Belong[edge[i].to],flag就会变为1
{
flag=1;
int v = edge[i].to;
vec[Belong[u]].push_back(Belong[v]);
}//建立一棵树
}
if(flag==0)
printf("impossible\n");
else{
dfs(1);
printf("%d\n",ans);
}
}
int main()
{
int n,m;
int u,v;
while(scanf("%d%d",&n,&m)==2)
{
init();
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
all+=a[i];
}
while(m--)
{
scanf("%d%d",&u,&v);
u++,v++;
addedge(u,v);
addedge(v,u);
}
solve(n);
}
return 0;
}
代码二:直接在求双连通时就行树形dp
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <queue>
#include <vector>
using namespace std;
const int MAXN = 10010;
const int MAXM = 40100;
struct Edge
{
int to,next;
bool cut;
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~block
int Index,top;
int block;
bool Instack[MAXN];
int count_num[MAXN];
int bridge;
int vis[MAXN];
int a[MAXN],num[MAXN],all;
int ans;
void addedge(int u,int v)
{
edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut = false;
head[u] = tot++;
}
int Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
int pre_cnt=0;//处理重边,如果不需要可以去掉
int sum=0;
for(int i = head[u];i != -1;i = edge[i].next)
{
v = edge[i].to;
if( v == pre &&pre_cnt==0){
pre_cnt++;
continue;
}
if( !DFN[v] )
{
sum+=Tarjan(v,u);
if(Low[u] > Low[v])Low[u] = Low[v];
if(Low[v] > Low[u])
{
bridge++;
edge[i].cut = true;
edge[i^1].cut = true;
}
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
block++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = block;
sum+=a[v];
}
while( v != u );
if(abs(2*sum-all)<ans)
ans=abs(2*sum-all);
}
return sum;
}
void init()
{
tot = 0;
all=0;
memset(head,-1,sizeof(head));
}
void solve(int N)
{
memset(DFN,0,sizeof(DFN));
memset(Belong,0,sizeof(Belong));
memset(Instack,false,sizeof(Instack));
Index = top = block = 0;
ans=1000000000;
for(int i = 1;i <= N;i++)
if(!DFN[i])
Tarjan(i,-1);
if(block==1)
printf("impossible\n");
else
printf("%d\n",ans);
}
int main()
{
int n,m;
int u,v;
while(scanf("%d%d",&n,&m)==2)
{
init();
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
all+=a[i];
}
while(m--)
{
scanf("%d%d",&u,&v);
u++,v++;
addedge(u,v);
addedge(v,u);
}
solve(n);
}
return 0;
}