Hdu 5751 Eades(fft)

题意:有一个子序列a1,a2,…,an,g(l,r)定义为max(al,al+1,…,ar),
f(l,r)=i=lr[ai=g(l,r)]
z[k]表示有多少对(l,r),f(l,r)=k
S=k=1nkzk


思路:
1<=ai<=n->我们可以通过枚举计算出每个值作为最大值对答案的贡献,对于每个最大值,你都可以将求出
若干个[lx,rx]表示x在这个区间内是最大值,假设这个区间内的x出现了n次,它的位置分别是p1…pm,
那么就可以转化为长度为m+1的序列c0,x1,…,cm,其中co=p1-l+1,cm=r-pm+1,ci=pi+1-pi
那么对zk的贡献为zk=(ci*c[i+k])(0<=i<=m)


在平常的fft中是无法把ci*c[i+k]同时累加到一项上的
比如
c[0] c[1] c[2] c[3]
c[0] c[1] c[2] c[3]
第一项为c[0]*c[0]
第二项为c[0]*c[1]+c[1]*c[0]
第三项为c[2]*c[0]+c[1]*c[1]+c[0]*c[2]



k=1的时候,c[0]*c[1]+c[1]*c[2]+c[2]*c[3]是分散在不同的指数上的
而现在我们需要把它集中到一项上,我们可以对下面的c[0],c[1],c[2],c[3]的指数进行翻转,
指数对应:
0 1 2 3
c[0] c[1] c[2] c[3]
c[3] c[2] c[1] c0
指数为0的答案:c[0]*c[3],实际k为3
指数为1的答案:c[0]*c[2]+c[1]*c[3],实际k为2
指数为2的答案:c[1]*c[2]+c[2]*c[3]+c[0]*c[1],实际k为1



这样指数不能集中的问题便能很好的解决了


接下来是时间复杂度的分析
每个点作为最大值只会出现一次,所以时间复杂度大致为nlogn

#include<bits/stdc++.h>
using namespace std;
const int MOD=313;
const double PI=acos(-1.0);

struct Complex{
    double x,y;
    Complex(double _x=0,double _y=0){
        x=_x;
        y=_y;
    }
    Complex operator -(const Complex &b)const{
        return Complex(x-b.x,y-b.y);
    }
    Complex operator +(const Complex &b)const{
        return Complex(x+b.x,y+b.y);
    }
    Complex operator *(const Complex &b)const{
        return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
    }
};

void change(Complex y[],int len){
    int i,j,k;
    for(i=1,j=len/2;i<len-1;i++){
        if(i<j)
            swap(y[i],y[j]);
        k=len/2;
        while(j>=k){
            j-=k;
            k/=2;
        }
        if(j<k) j+=k;
    }
}

void fft(Complex y[],int len,int on){
    change(y,len);
    for(int h=2;h<=len;h<<=1){
        Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
        for(int j=0;j<len;j+=h){
            Complex w(1,0);
            for(int k=j;k<j+h/2;k++){
                Complex u=y[k];
                Complex t=w*y[k+h/2];
                y[k]=u+t;
                y[k+h/2]=u-t;
                w=w*wn;
            }
        }
    }
    if(on==-1)
        for(int i=0;i<len;i++)
            y[i].x/=len;
}
const int MAXN=121000;
Complex x1[2*MAXN],x2[2*MAXN];
int a[MAXN/2],n;
long long ans[MAXN/2];
vector<int>G[MAXN/2];
int maxv[MAXN*2],L,R;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

void pushup(int rt){
    maxv[rt]=max(maxv[rt<<1],maxv[rt<<1|1]);
}

void build(int l,int r,int rt){
    if(l==r){
        maxv[rt]=a[l];
        return ;
    }
    int m=l+r>>1;
    build(lson);
    build(rson);
    pushup(rt);
}

int getmax(int l,int r,int rt){
    if(L<=l&&R>=r)
        return maxv[rt];
    int m=(l+r)>>1,ans=0;
    if(L<=m)
        ans=getmax(lson);
    if(R>m&&maxv[rt]>ans)
        ans=max(ans,getmax(rson));
    return ans;
}

void solve(int l,int r){
    if(l>r)
        return ;
    if(l==r){
        ans[1]++;
        return ;
    }
    L=l,R=r;
    int v=getmax(1,n,1);
    vector<int>p;
    int lft=lower_bound(G[v].begin(),G[v].end(),l)-G[v].begin();
    int rft=upper_bound(G[v].begin(),G[v].end(),r)-G[v].begin()-1;
    p.push_back(l-1);
    for(int i=lft;i<=rft;i++)
        p.push_back(G[v][i]);
    p.push_back(r+1);
    int len1=p.size()-1,len2=p.size()-1,len=1;
    while(len<len1+len2) len<<=1;
    for(int i=0;i<len1;i++)
        x1[i]=Complex(p[i+1]-p[i],0);
    for(int i=0;i<len2;i++)
        x2[i]=Complex(p[len2-i]-p[len2-i-1],0);
    for(int i=len1;i<len;i++)
        x2[i]=x1[i]=Complex(0,0);
    fft(x1,len,1);
    fft(x2,len,1);
    for(int i=0;i<len;i++)
        x1[i]=x1[i]*x2[i];
    fft(x1,len,-1);
    for(int i=0;i<len1-1;i++)
        ans[len1-i-1]+=(int)(x1[i].x+0.5);
    for(int i=0;i<p.size()-1;i++)
        solve(p[i]+1,p[i+1]-1);
}

int main(){
    int _;
    scanf("%d",&_);
    while(_--){
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            G[i].clear(),ans[i]=0;
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]),G[a[i]].push_back(i);
        build(1,n,1);
        solve(1,n);
        long long ANS=0;
        for(int i=1;i<=n;i++)
            ANS+=(i^ans[i]);
        printf("%lld\n",ANS);
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值