动图详细讲解 LeNet-5 网络结构

本文详细讲解了LeNet-5网络结构,包括其全貌、超参数计算和计算量(FLOPs)。通过2D和3D动图展示了卷积层、池化层和全连接层的工作原理。LeNet-5由两个卷积层、两个全连接层和一个输出层组成,总计约6万超参数,广泛应用于手写数字识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeNet-5 动图详细讲解网络结构

LeNet-5 是 Yann LeCun 等人在1998年设计的用于手写数字识别的卷积神经网络,当年美国大多数银行就是用它来识别支票上面的手写数字的,它是早期卷积神经网络中最有代表性的实验系统之一。本文将重点讲解LeNet-5的网络参数计算和实现细节。

1. LeNet-5全貌

在这里插入图片描述
LeNet-5是一个总共5层的卷积神经网络(一般输入层不计,两个卷积层 + 两个全连接层 + 输出层)。上图已经清晰的标明了各层神经网络的参数了,整理如下。
在这里插入图片描述
这里推荐下面两个网站,可以动图的展示LeNet-5的计算过程。
2D效果 http://scs.ryerson.ca/~aharley/vis/conv/flat.html
在这里插入图片描述
3D效果 http://scs.ryerson.ca/~aharley/vis/conv/
在这里插入图片描述

2. 超参数与计算量(FLOPs)

2.1 卷积层

如果对卷积过程还不是很清楚的朋友可以参考 卷积动图
在这里插入图片描述
对于卷积层,它的超参数就是对应的 kernel 的值和偏置项,比如对于上面的 C1 卷积层,输入为 32 ∗ 32 ∗ 1 32*32*1 32321,这里 1 是输入的 channel,计为 C i n C_{in} Cin,输出为 28 ∗ 28 ∗ 6 28*28*6 28286,6 是输出的 channel。kernel 为 5 ∗ 5 ∗ C i n ∗ C o u t = 5 ∗ 5 ∗ 1 ∗ 6 5*5*C_{in}*C_{out} = 5*5*1*6 55Cin

爬取网站上的通常涉及网络抓取技术,特别是在Python中使用像BeautifulSoup、Scrapy等库。以下是基本步骤: 1. **设置目标**:首先确定你要爬取的网站,查看其是否允许抓取,并了解的URL结构或CSS选择器。 2. **编写代码**:使用Python的requests库获取网页内容,例如: ```python import requests url = "http://example.com/page1" # 请替换为你实际的目标页面 response = requests.get(url) ``` 3. **解析HTML**:使用BeautifulSoup或其他解析库解析响应数据,找到包含的元素: ```python from bs4 import BeautifulSoup soup = BeautifulSoup(response.text, 'html.parser') img_tags = soup.select('img') # 根据网站结构调整选择器 ``` 4. **下载片**:针对每个找到的`<img>`标签,检查是否有src属性并下载片: ```python for img in img_tags: img_url = img['src'] if 'http' not in img_url: # 如果不是完整链接,拼接上基础url img_url = f"{url}/{img_url}" response_img = requests.get(img_url) with open(f'downloads/{img_url.split("/")[-1]}', 'wb') as f: f.write(response_img.content) ``` 5. **遍历页面**:如果有多于一页,需要循环处理,你可以通过分析分页链接或者查找下一个页面的指示来完成。这里是一个简单的递归例子: ```python def crawl_pages(base_url, max_pages=5): for i in range(1, max_pages + 1): print(f"Crawling page {i}") current_url = base_url.format(page=i) # 假设分页链接是?page=1, ?page=2等 ... # 使用上述方法爬取当前页面 if not next_page_url: # 如果找不到下一页链接,则退出递归 break crawl_pages("http://example.com/page{}", 5) ``` 6. **注意事项**:确保遵守网站的robots.txt规则,尊重版权,并处理可能出现的反爬虫机制(如验证码、IP限制)。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值