Problem A - f91
Time Limit: 1 second
Background
McCarthy is a famous theorician of computer science. In his work, he defined a recursive function, called f91, that takes as input a positive integer N and returns a positive integer defined as follows:
- If N ≤ 100, then f91(N) = f91(f91(N+11));
- If N ≥ 101, then f91(N) = N-10.
The Problem
Write a program, that computes McCarthy's f91.
The Input
The input tests will consist of a series of positive integers, each integer is at most 1,000,000. There will be at most 250,000 test cases. Each number is on a line on its own. The end of the input is reached when the number 0 is met. The number 0 shall not be considered as part of the test set.
Output
The program shall output each result on a line by its own, following the format given in the sample output.
Sample input
500 91 0
Sample output
f91(500) = 490 f91(91) = 91
本来以为这题还得推一下递推关系式再打表呢,结果直接递归打表都不会T
不过用了0.8s,差点就T掉了。
#include<cstdio> #include<iostream> #include<string> #include<vector> #include<map> #include<set> #include<algorithm> #include<cmath> #include <cstring> #include <queue> using namespace std; #define eps 1e-20 #define MAXN 1000000 + 10 #define outstars cout << "*********" << endl; int f[MAXN]; int ff(int n) { if(n <= 100) { return ff(ff(n + 11)); } else return n - 10; } int main() { int n; for(int i = 1 ; i <= 1000000 ; i++) { f[i] = ff(i); //cout << f[i] << endl; } while(cin >> n , n) { printf("f91(%d) = %d\n",n,f[n]); } return 0; } /* */