HDOJ1760[SG博弈]二维状态

题目:题目链接


Problem Description
曾经,Lele和他姐姐最喜欢,玩得最久的游戏就是俄罗斯方块(Tetris)了。
渐渐得,Lele发觉,玩这个游戏只需要手快而已,几乎不用经过大脑思考。
所以,Lele想出一个新的玩法。

Lele和姐姐先拿出一块长方形的棋盘,这个棋盘有些格子是不可用的,剩下的都是可用的。Lele和姐姐拿出俄罗斯方块里的正方形方块(大小为2*2的正方形方块)轮流往棋盘里放,要注意的是,放进去的正方形方块不能叠在棋盘不可用的格子上,也不能叠在已经放了的正方形方块上。
到最后,谁不能再放正方形方块,谁就输了。

现在,假设每次Lele和姐姐都很聪明,都能按最优策略放正方形,并且每次都是Lele先放正方形,你能告诉他他是否一定能赢姐姐吗?
Input
本题目包含多组测试,请处理到文件结束。
每组测试第一行包含两个正整数N和M(0<N*M<50)分别代表棋盘的行数和列数。
接下来有N行,每行M个0或1的数字代表整个棋盘。
其中0是代表棋盘该位置可用,1是代表棋盘该位置不可用
你可以假定,每个棋盘中,0的个数不会超过40个。
Output
对于每一组测试,如果Lele有把握获胜的话,在一行里面输出"Yes",否则输出"No"。
Sample Input
  
  
4 4 0000 0000 0000 0000 4 4 0000 0010 0100 0000
Sample Output
  
  
Yes No
这道题目乍一看没有思路,大体的理解的解题思路是搜索,不过看到有提示说是SG博弈。先说搜索吧感觉上来说就是尽量把一些点占据,使对方能放的点少一点,可是后来想了想,好像又不对,比如说如果先手占据了一个后可以使得剩下的有1个,也可以有两个。那么这样的话先手就输了。所以说不能直接就这样去求。回头看别人写的代码,用SG值的特性来计算,就像SG那样,使用四个点,看是不是能够使对方面对必败态。这样的就需要做一个search。


就是说,判断点,如果可以放入,并记录。然后检查剩余的点,看是否能够使得后者无路可走,是的话,就直接返回。不是的话,释放当前点,继续找下一点,对下一点做同样的判断。如果所有的点都检查过后仍然没有返回。那么再次检查flag的数目,如果整个方格的可放数目低于2,就返回值。否则返回0;


有什么更好的方法呢?

#include <iostream>
#include <cstdio>
#include <string>
#include <string.h>
#include <map>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <queue>
#include <set>
#include <stack>
#include <functional>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cassert>
#include <bitset>
#include <stack>
#include <ctime>
#include <list>
#define INF 0x7fffffff
#define max3(a,b,c) (max(a,b)>c?max(a,b):c)
#define min3(a,b,c) (min(a,b)<c?min(a,b):c)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;

int QuickMod(int  a,int b,int n)
{
    int r = 1;
    while(b)
    {
        if(b&1)
            r = (r*a)%n;
        a = (a*a)%n;
        b >>= 1;
    }
    return r;
}
#define maxn 55
char str[maxn][maxn];
int n, m;
bool judge(int x,int y)
{
    if(str[x][y+1] == '0' && str[x+1][y] == '0' && str[x+1][y+1] == '0')
        return true;
    return false;
}
void change(int x, int y, char c)
{
    str[x][y] = c;
    str[x][y+1] = c;
    str[x+1][y+1] = c;
    str[x+1][y] = c;
}
int search()
{
    int flag = 0;
    for(int i = 0; i < n-1; ++i)
    {
        for(int j = 0; j < m-1; ++j)
        {
            if(str[i][j] == '0')
            {
                if(judge(i, j))
                {
                    flag++;
                    change(i, j, '1');
                    if(!search())
                    {
                        change(i, j, '0');
                        return 1;
                    }
                    change(i, j, '0');
                }
            }
        }
    }
    if(flag <= 1)return flag;
    return 0;
}
int main()
{
    while(scanf("%d%d", &n, &m) != EOF)
    {
        for(int i = 0; i < n; ++i)
            scanf("%s", str[i]);
        if(search())
            puts("Yes");
        else puts("No");
    }
    return 0;
}

 

努力努力...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值