文章标题 HDU-3067 小t的游戏

小t有点神经质,喜欢发明一些稀奇古怪的游戏,比如说左手和右手打架就是他发明的。
这个周末,小t又发明了一个有趣的硬币游戏:小t手里有6枚硬币,他把硬币分成了两堆,一左一右并排堆放,一堆2个,一堆4个。然后他开始从这两个堆中各取出1个硬币,再组成一个新的堆放在最右边。用(2,4)表示初始两堆,于是作下抽象,第一次操作后(2,4)变成了(1,3,2)。小t继续操作,他从这三堆中继续各取出1个硬币,组成新堆放到最右边。于是(1,3,2)变成了(0,2,1,3),去掉空堆,变成(2,1,3)。小t继续进行以上操作并去除空堆,(2,1,3)变成了(1,2,3)。这时,小t发现如果继续做同样的动作,分堆的硬币不会再有变化了,一直都是(1,2,3)状态,也就是陷入了循环节为1的循环。
小t突发奇想,他想知道:如果知道硬币的分堆数,和每堆硬币的个数,执行“每次从已有的每一堆硬币中取出1个硬币,凑成新堆”的操作,用(a,b,c,d,….)表示分堆状态(其中a,b,c,d…每个字母都是正整数),分堆状态是否会陷入循环,如果陷入循环,循环节又是多少呢。

Input
输入有很多组case,每组case
第一行一个正整数n (n<65536),表示硬币分为多少堆
第二行有n个整数,每个数k<65536,表示每堆有多少个硬币,每个数后面都有一个空格。
Output
如果分堆状态陷入循环,输出分两行,第一行输出yes,第二行输出一个整数表示循环节长度。
否则输出就一行no。

Sample Input
2
2 4
2
2 3

Sample Output
yes
1
yes
3

其实就是找规律

#include<stdio.h>
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        int a,sum=0;
        int i,ans;
        for(i=0; i<n; i++)
        {
            scanf("%d",&a);
            sum+=a;
        }
        if(sum==2)
            ans=2;
        else
        {
            for(i=1; i<sum; i++)
            {
                if((i+1)*i/2==sum)
                {
                    ans=1;
                    break;
                }
                if((i+1)*i/2>sum)
                {
                    ans=i;
                    break;
                }
            }
        }
        printf("yes\n");
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值