在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
…#
..#.
.#..
#…
-1 -1
Sample Output
2
1
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
char map[10][10];
int vast[10],sum;
int n,m;
void dfs(int x,int ans)
{
if(ans==m)//放够m个结束,sum++;
{
sum++;
return;
}
for(int i=x;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(!vast[j]&&map[i][j]=='#')//同列没放过
{
vast[j]=1;标记该列放过
dfs(i+1,ans+1);
vast[j]=0;
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n==-1&&m==-1)
break;
sum=0;
memset(vast,0,sizeof(vast));
int i,j;
for(i=0;i<n;i++)
scanf("%s",map[i]);
dfs(0,0);
printf("%d\n",sum);
}
}