1.2 利用历史数据实现策略回测

本文介绍如何利用pandas处理历史数据,实现两个简单的交易策略:收盘价突破120日均线的买卖策略和基于周规则的买卖策略。通过2009/3/12至2019/3/12上证综指数据,计算了这两个策略的十年总回报率和年平均复利回报率,结果显示周规则策略表现优于简单均线策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言
承接上文,在实现pandas进行数据清洗、作均线之后,已经可以开始实现一些简单的小策略了。
小策略一:如果当日收盘价向上突破120日均线,则买入,如果当日收盘价向下突破120日均线,则卖出。
小策略二(周规则):如果当日收盘价向上突破前50日的最高价,则买入,如果当日收盘向下突破前20日的最低价,则卖出。
数据:2009/3/12至2019/3/12的上证综指数据,包括最高价,最低价,开盘价,收盘价,来自国泰安CSMAR数据库。

代码

#此程序用于读取上证综指的近10年数据,并且计算120日均线,利用周规则进行投资,看回报率如何
import numpy as np
import pandas as pd
import datetime
import matplotlib.pyplot as plt

data = pd.read_csv("TRD_Index.csv")
#读取收盘价
close_price = data[data["Indexcd"] == 1]["Clsindex"]
high_price = data[data["Indexcd"] == 1]["Hiindex"]
low_price = data[data["Indexcd"] == 1]["Loindex"]

#读取指数的code
stk = data["Indexcd"]
stk = stk.drop_duplicates()
#print(stk)
#最初,df只表示收盘价,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值