前言:很多人都了解Black-Scholes公式,但是关于这个公式具体应该怎么用,要代入哪些变量计算,还不是非常清楚。
本文用python编程,代入变量具体计算B-S公式的隐含波动率,并且会指明哪些变量用哪些值代入。
B-S公式:
C:期权的理论价值
S:标的证券的当前价格
K:期权的行权价
r:无风险利率
σ:股票收益率的波动率
T:期权有效期限
并且期权的理论价值C与期权股票收益率的波动率σ呈反比,σ越大,期权理论价值越小。
计算代码如下:
以上证50ETF购6月,行权价为2.05为例。
得到2019年3月25日收盘时,上证50ETF的价格为0.9551,期权价格为0.6750,隐含波动率为35%,剩余交易日为63天。
需要特别说明的是,
- 50ETF标的价格S取的是华夏上证50ETF,510050,收盘价为0.9551;
- T取的是期权剩余有效期限t与一年交易日的比值,T = t/252,认为一年平均有252个交易日;
- 无风险利率取的是余额宝的最新7日年化收益率,2.51%,当然可以取最新国债收益率或者国开债,whatever。
代码如下
from math import *
from scipy.stats impor