CV基石-ResNet论文研读

1、Highway Network --- 首个成功训练成百“上千层”(100层及900层)的卷积神经网络

特点:借鉴LSTM,引入门控单元,将传统前向传播增加一条计算路径,变成公式(3)形式
          增加了额外训练参数W_T
2、深层网络退化问题
越深的网络拟合能力越强,但在增加网络层数的过程中,当达到一定层数时,继续增加层数,训练误差变大的现象 ​

可以看出,34层ResNet比18层ResNet好2.8%。更重要的是,34层ResNet显示出相当低的训练误差,并可推广到验证数据。这表明,在这种情况下,退化问题得到了很好的解决,我们设法通过增加深度获得了精度增益,并且ResNet更深但参数少。

3、残差结构-Architecture of residual learning

目标:实现恒等映射(identity mapping),即F(x) = 0    ∂H/∂x=∂F/∂x + ∂x/∂x = ∂F/∂x+1

Shortcut mapping 策略:

A-全零填充:维度增加的部分采用零来填充

B-网络层映射:当维度发生变化时,才通过网络层映射(1*1卷积)特征图至相同维度

C-所有shortcut均通过网络层映射( 1*1卷积)

有利于梯度反向传播,使得深层网络扩展成为可能

4、ResNet结构

 

划分为6个stage   1. 头部迅速降低分辨率    2. 4阶段残差结构堆叠      3. 池化+FC层输出
残差结构堆叠两种方式:

1、两层:两个3*3卷积堆叠
2、三层:借鉴GoogLeNet,利用1*1减少计算量-第一个1*1下降1/4通道数,第二个1*1恢复4倍通道数
假设输入输出通道数为256,两层残差结构参数量为3×3×256×256×2 = 1179648,三层残差结构参数量为1×1×256×64 + 3×3×64×64 + 1×1×64×256 = 69632,减少了16.94倍
5、预热训练(Warmup)
特点:避免一开始较大学习率导致模型的不稳定,因而一开始训练时用较小的学习率训练一个epochs,后恢复正常学习率
        由于刚开始训练时,模型的权重是随机初始化的,此时若选择一个较大的学习率,可能带来模型的不稳定(振荡),选择Warmup预热学习率的方式,可以使得开始训练的几个epoches或者一些iterations内学习率较小,在预热的小学习率下,模型可以慢慢趋于稳定,等模型相对稳定后再选择预先设置的学习率进行训练。        
       论文中使用一个110层的ResNet在cifar10上训练时,先用0.01的学习率训练直到训练误差低于80%(大概训练了400个iterations),然后使用0.1的学习率继续进行训练。
6、总结
(1)引入shortcut connection,让网络信息有效传播,梯度反传顺畅,使得数千层卷积神经网络都可以收敛。本文中:shortcut connection == skip connection == identity mapping
(2)大部分的梯度消失与爆炸问题,可通过良好初始化或者中间层的标准化来解决。
(3) shortcut connection有很多种方式,本文主要用的是恒等映射,即什么也不操作的往后传播
(4) highway network的shortcut connection依赖参数控制,resnet不需要
(5) 恒等映射形式的shortcut connection是从网络退化问题中思考而来
(6) 借鉴VGG,本文模型设计原则:1.处理相同大小特征图,卷积核数量一样;2.特征图分辨率降低时,通道数翻倍
(7) 当特征图分辨率变化时,shortcut connection同样采用stride=2进行处理
(8) bottleneck 中两个1*1卷积分别用于减少通道数和增加/保存通道数
(9) 模型集成采用6种不同深度的ResNet结构,可以借鉴其思路
(10)cifar-10数据集上的ResNet-110, 第一个epochs采用较小学习率,来加速模型收敛
(11) cifar-10数据集上,ResNet-1202比110要差,原因可能是过拟合,而不是网络退化

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值