01 期刊信息
标题:Open-source software for geospatial analysis
期刊: nature reviews earth & environment highlight|
02 主体内容
卫星图像提供了对地球表面在何处以及如何变化的深入了解,特别是在通常缺乏实地测量的偏远地区。由于卫星产生了大量数据,我们需要简化的计算管道来优化处理能力。尽管存在大量处理卫星数据的平台,但这些平台通常都有昂贵的许可要求,这使得许多地理空间社区的价格过高。此外,许多平台都是适当的,但在开发地理空间处理工作流程时,透明度是关键。开源编程对于创建高效的图像处理管道至关重要。
基于python的开源编程已经成为遥感科学的关键工具。Python是一种高级的面向对象语言,设计为易于阅读,因此易于访问。有许多python库或包可用于处理批量数据和开发可以传播给一般受众的新数据集或结果。例如,地理空间数据抽象库(GDAL)是一个栅格数据的翻译库,它支持大量栅格格式,并支持几乎所有专有和开源软件。Rasterio是一个建立在GDAL之上的流行地理空间库,用户可以利用它来读取和处理数据,并使用内置工具创建栅格文件作为导出。遥感和GIS库(RSGISLib)提供了更大的可访问性,它包含超过850个功能,跨越21个模块,用于处理地理空间数据,包括光栅(例如,图像)和矢量(例如,shapefile)数据集。通过提供更多的功能,用户可以更轻松地执行专门的任务。矢量数据集的处理也可以通过GeoPandas(基于Pandas库)来实现,它建立在GDAL的基础上,提供易于使用的读取、操作和导出矢量数据的访问。
在Python中使用开源软件使科学界能够开发快速有效的管道来处理卫星和GIS数据并传播结果。例如,在我自己的工作中,我使用开源软件通过NDVI分析来量化过去20年红树林健康状况的变化率。通过使用高效的开源工具处理20年的卫星数据,我能够减少通常执行此分析所需的时间,并拥有可重复的方法。尽管使用开源工具正变得越来越流行,但社区内的开发人员和维护人员仍然需要支持这些python库(补充信息)。
GEE学习室点评
这篇短文highlight告诉了我们几个在地理科学数据处理中经常使用的库,这些库能够很方便的帮助我们完成任务。这地方引入一个很重要的问题,那就是大家在读研或者求学的过程中,究竟需要注意培养哪些技能?
简单来说,需要“数学”+"编程”这两项基本能力。
数学用于日常公式推导和创新,包括理解别人的算法和提出自己的算法,这些基本上都是数学在起作用。比如,加入你提出了一种新的算法,把之前的算法的复杂度从O(N2)降到了O(N),那你就很了不起。
编程的话,则是快速实现自己的算法以及复现别人的算法,虽然偏工程,但是也很重要。基本上你的编程能力决定了你出成果的速度和数量,如果一个很牛的算法从原始提出到最后实现之间有巨大的鸿沟,那么很可能在你实现之后别人也提出来了。
所以,套用那句老话,在数学+编程能力上,一定要有“两手都要抓,两手都要硬”的心理准备和艰苦奋斗的准备。
还有,顺手说一句,交流群中经常有同学使用ArcGIS或者ENVI来处理数据,这样太慢了,建议大家都“强迫”使用编程来解决问题,尤其是借着本次推文的契机开始学习Matlab、Python和Google Earth Engine等。此外,对于GEE编程,如果觉得自己水平还不够的,可以考虑一下GEE学习室的有关课程(见第一届遥感云计算与大数据智能处理课程(2023.11.11优惠后通知))
交流合作
GEE学习室是一群由认真学习和使用GEE等遥感大数据平台的高校博士生(含在读和已毕业)组建的团队,致力于GEE等大数据原创和优质算法开发,希冀通过团队的努力为遥感大数据智能处理普及和广大学子科研之路提供绵薄之力、荧荧之光。
本学习室业已创建了4个学习交流群,即博学群、明辨群、如琢群和修远群,来自各地高校和研究所,涵盖本科、硕士和博士群体,交流群每天活跃度非常高。
想加入交流的加小编微信邀请进群(扫描下方二维码咨询报名或菜单栏“联系我们”选项框都可以找到小编哟)。注意,咨询加群验证信息请备注为“研究方向-学校-加群”格式,否则不予通过。例如,假如你是武汉大学的土地利用分类方向的研究生,则可以备注“LULC-武大-加群”;假如你是北京大学的生态学方向的研究生,则可以备注“生态学-北大-加群”。