文章导读
基于遥感的地表温度(LST)的降尺度对城市供暖、火山监测等多个研究领域具有重要意义。全球卫星的LST数据集最多也仅限于60米。在本研究中,利用Google Earth Engine(GEE)平台的海量计算能力和10个大数据集目录,设计了一个1米的全自动、开源、用户友好的LST降尺度系统,命名为High Spatial Resolution-GEE或HSR-GEE。它具有降低Landsat-8 LST尺度的能力。
论文标题
Mhawej M, Abunnasr Y. HSR-GEE: A 1-m GEE Automated Land Surface Temperature Downscaling System over CONUS[J]. EGUsphere, 2023, 2023: 1-16.
研究方法研究结论
结合国家农业图像计划(NAIP)图像和CONUS,在Landsat-8过境时期,输入I米的HSR-lST。HSR -GEE仅使用红、绿、蓝和近红外波段,实现了多种机器学习方法。包括最小二乘法( RLS)、随机森林(RF)和支持向量机(SVM)并与辐射表面温度分解(DisTrad模型)和热锐化(TSHARP)方法进行了比较。本文针对美国上空的多幅航空热像图对HSR-GEE的输出结果进行了验证。RLS、RF、SVM、DisTrad模型和TSHARP的MAE分别为1.92°℃、2.53℃、1.33℃、3.42℃和3.4℃。SVM方法是一种土地覆盖/利用形式,RLS方法最适合1m的LST降尺度。
研究结论
(1)HSR-GEE这个系统的提出,可以帮助来自不同背景的研究人员推进研究。
(2)HSR-GEE是目前唯一可用的基于1-m GEE的降尺度系统,它能够在几秒钟用几种不同的方法(即RLS、RF、SVM、DisTrad模型和TSHARP模型)导出所需的高分辨率LST信息。
(3)在CONUS上实现这个动态系统,并在必要时对其进行增强。
结果展示