在 Google Earth Engine (GEE) 上使用随机森林对 2 米气温进行空间降尺度

本文介绍了如何利用Google Earth Engine (GEE)和随机森林算法进行2米气温的空间降尺度处理,以解决气象站数据不足的问题。通过结合NASADEM的海拔、MODIS的亮度温度和NDVI等数据,训练随机森林模型进行预测,最终得到高分辨率的气温数据,以更好地理解温度变化和城市热岛效应。
摘要由CSDN通过智能技术生成

背景

2米气温,也称为近地表气温,是各种环境和气象研究的关键因素。之所以将重点放在2米水平上,是因为它大约是人类的平均高度,因此它提供了人类在日常生活中通常会经历的温度的实用测量。

在研究城市热岛效应 (UHI) 等现象时,这种温度尤其重要,由于人类活动和城市结构,城市地区往往比农村环境更温暖。了解2米气温可以帮助我们评估城市热岛效应对人类舒适度、健康和能源消耗的影响。

 

然而,获得准确且高分辨率的 2 米气温数据可能是一个挑战。通常用于收集这些数据的气象站可能分布不均匀,或者可能无法代表所有地理区域,特别是那些具有复杂地形或城市结构的地理区域。

这就是空间缩小的概念变得至关重要的地方。空间降尺度是一种用于从低分辨率数据获取高分辨率数据的方法。在 2 米气温的背景下,它涉及使用其他相关数据,例如来自 NASA 数字高程模型 (NASADEM) 的高程和来自中分辨率成像光谱仪 (MODIS) 的亮温数据。当使用随机森林回归等机器学习技术处理这些数据时,可以帮助以更精细的尺度预测 2 米气温,为各种分析提供更精确的数据。这种方法可以更详细地了解温度变化,这对于有效的环境规划和管理至关重要。

为什么选择 Google 地球引擎 (GEE)?

GEE 的主要优势之一是它是一个基于云的平台。这意味着所有数据处理都发生在 Google 的服务器上,而不是在您的本地计算机上。在处理 MERRA、NASADEM 和 MODIS 等大型数据集时,此功能特别有用。它确保您的本地计算机不会因繁重的数据处理任务而疲惫不堪,从而提供流畅高效的用户体验。GEE 的另一个优点是大部分数据已经对齐。这意味着所有数据集共享相同的位置。在处理多个数据集时,这种对齐至关重要,因为它可以确保分析的一致性和准确性。

执行空间缩小指南

数据和可视化参数

该脚本首先定义一个调色板,它是十六进制颜色代码的数组。该调色板名为“ironbow”,范围从深蓝色(“000067”)到深红色(“330000”),代表颜色的渐变。该调色板稍后将在脚本中用于可视化地图上的数据,提供一种直观的方式来理解数据的变化。

然后,该脚本继续处理三个关键数据集:表示 2 米气温的 MERRA、表示海拔的 NASADEM 和表示亮度温度的 MODIS。它根据特定的日期范围过滤这些数据集,选择必要的波段,并将数据剪辑到定义的区域。该脚本还根据 MODIS 数据计算归一化植被指数 (NDVI),这是植被健康状况的常见指标。为了确保数据集之间的一致性,应用了重采样和重新投影等预处理步骤。最后,该脚本从 MODIS 数据中选择几个亮度温度带,这对于提供表面温度信息至关重要。这证明了 Google Earth Engine 在处理用于环境研究的大型地理空间数据集方面的强大功能。

// Visualization
// Define the 'ironbow' color palette.
var palette = ['000067','0000ff','0099ff','00ff66','66ff00','ccff00','ffff00','ffcc00','ff9900','ff6600','ff3300','cc0000','990000','660000','330000'];

//------------------------------------------------------------
您可以使用Google Earth EngineGEE)下载月尺度的EVI(Enhanced Vegetation Index)数据。下面是一些步骤供您参考: 1. 首先,您需要访问Google Earth Engine的网站(earthengine.google.com),并登录您的账号。 2. 在地图界面的左上角搜索栏中,输入“MODIS EVI”,然后点击搜索按钮。 3. 在搜索结果中,选择“MODIS/006/MOD13A3”数据集,点击它以打开相应的数据集页面。 4. 在数据集页面上,您可以选择感兴趣的地理范围和时间范围。您可以使用地图界面上的工具来定义您的区域,并使用时间滑块选择时间范围。 5. 在数据集页面上,您可以找到一个名为“Code Editor”的按钮,点击它以打开GEE的代码编辑器。 6. 在代码编辑器中,您可以使用JavaScript编写代码来下载EVI数据。以下是一个简单的示例: ```javascript var dataset = ee.ImageCollection('MODIS/006/MOD13A3') .select('EVI') .filterDate('开始日期', '结束日期') .filterBounds(geometry); var evi = dataset.mean(); Export.image.toDrive({ image: evi, description: 'evi_data', scale: 250, // 设置合适的分辨率 region: geometry // 设置感兴趣的地理范围 }); ``` 请确保将“开始日期”和“结束日期”替换为您想要下载的时间范围,并将“geometry”替换为您感兴趣的地理范围。 7. 在代码编辑器中,点击“运行”按钮以运行代码。GEE将开始处理数据并生成一个任务。 8. 在任务完成后,您可以在GEE的“Tasks”选项卡中找到下载链接。点击链接即可下载EVI数据。 请注意,上述代码只是一个简单的示例,您可以根据您的需求进行相应的修改和调整。此外,下载大规模数据可能需要一定时间,请耐心等待任务完成。 希望这些步骤对您有所帮助!如有任何问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gis收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值