背景
2米气温,也称为近地表气温,是各种环境和气象研究的关键因素。之所以将重点放在2米水平上,是因为它大约是人类的平均高度,因此它提供了人类在日常生活中通常会经历的温度的实用测量。
在研究城市热岛效应 (UHI) 等现象时,这种温度尤其重要,由于人类活动和城市结构,城市地区往往比农村环境更温暖。了解2米气温可以帮助我们评估城市热岛效应对人类舒适度、健康和能源消耗的影响。
然而,获得准确且高分辨率的 2 米气温数据可能是一个挑战。通常用于收集这些数据的气象站可能分布不均匀,或者可能无法代表所有地理区域,特别是那些具有复杂地形或城市结构的地理区域。
这就是空间缩小的概念变得至关重要的地方。空间降尺度是一种用于从低分辨率数据获取高分辨率数据的方法。在 2 米气温的背景下,它涉及使用其他相关数据,例如来自 NASA 数字高程模型 (NASADEM) 的高程和来自中分辨率成像光谱仪 (MODIS) 的亮温数据。当使用随机森林回归等机器学习技术处理这些数据时,可以帮助以更精细的尺度预测 2 米气温,为各种分析提供更精确的数据。这种方法可以更详细地了解温度变化,这对于有效的环境规划和管理至关重要。
为什么选择 Google 地球引擎 (GEE)?
GEE 的主要优势之一是它是一个基于云的平台。这意味着所有数据处理都发生在 Google 的服务器上,而不是在您的本地计算机上。在处理 MERRA、NASADEM 和 MODIS 等大型数据集时,此功能特别有用。它确保您的本地计算机不会因繁重的数据处理任务而疲惫不堪,从而提供流畅高效的用户体验。GEE 的另一个优点是大部分数据已经对齐。这意味着所有数据集共享相同的位置。在处理多个数据集时,这种对齐至关重要,因为它可以确保分析的一致性和准确性。
执行空间缩小指南
数据和可视化参数
该脚本首先定义一个调色板,它是十六进制颜色代码的数组。该调色板名为“ironbow”,范围从深蓝色(“000067”)到深红色(“330000”),代表颜色的渐变。该调色板稍后将在脚本中用于可视化地图上的数据,提供一种直观的方式来理解数据的变化。
然后,该脚本继续处理三个关键数据集:表示 2 米气温的 MERRA、表示海拔的 NASADEM 和表示亮度温度的 MODIS。它根据特定的日期范围过滤这些数据集,选择必要的波段,并将数据剪辑到定义的区域。该脚本还根据 MODIS 数据计算归一化植被指数 (NDVI),这是植被健康状况的常见指标。为了确保数据集之间的一致性,应用了重采样和重新投影等预处理步骤。最后,该脚本从 MODIS 数据中选择几个亮度温度带,这对于提供表面温度信息至关重要。这证明了 Google Earth Engine 在处理用于环境研究的大型地理空间数据集方面的强大功能。
// Visualization
// Define the 'ironbow' color palette.
var palette = ['000067','0000ff','0099ff','00ff66','66ff00','ccff00','ffff00','ffcc00','ff9900','ff6600','ff3300','cc0000','990000','660000','330000'];
//------------------------------------------------------------