人工智能|深度学习——基于对抗网络的室内定位系统

该博客围绕室内定位技术展开,指出传统方法抗环境动态性弱、成本高的问题。提出基于对抗网络思想的室内定位系统,采用CSI信号定位,设计了指纹生成器等模块。通过多组实验对比,证明该系统在动态环境下定位优势明显,且训练环境越多、增加空间约束等可提升定位效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码下载:

基于CSI的工业互联网深度学习定位.zip资源-CSDN文库

摘要

室内定位技术是工业互联网相关技术的关键一环。该技术旨在解决于室外定位且取得良好效果的GPS由于建筑物阻挡无法应用于室内的问题。实现室内定位技术,能够在真实工业场景下实时追踪和调配人员并做到对自动化生产各环节的监控,对提升生产效率有积极意义。

现有几乎所有关于室内定位的研究存在抗环境动态性弱的问题,即面对复杂的环境变化时,这些方法呈现出准确性低,鲁棒性差的性质;针对这种情况,研究者提出的方法是不断维护、更新数据库,以符合环境变化。但是这种方法会带来大量的额外成本消耗,包括人力维护的费用,以及存储大量数据的内存消耗等,而且并没有从根本上解决问题。

针对以上问题,我们提出了一种新颖的基于对抗网络思想的室内定位系统。我们的贡献可以总结如下:

1、提出了一种处理高维的WiFi CSI(Channel State Information)信号的方法,该方法可以保证将CSI信号转换为二维可处理图像的同时保证各维度信息的关联性

2、我们应用对抗网络的思想,设计了一个全新的定位框架,这种框架能够分离目标特征和环境特征,具有可以有效降低动态环境带来的影响,且不需要频繁更新

3、在大量数据集上进行了实验,并复现了时下最先进的几种室内定位的方法进行对比,结果表明我们提出的新方法在动态环境下的表现远优于其他几种方法

在设计的思路上,我们沿用了过往研究采用的WiFi指纹使用方法,但是稍有不同不同的是我们选择了CSI这个指标而不是传统的RSS,这一点会在下文中进行分析。我们设计了指纹生成器、特征提取器、位置预测器和域辨别器四个部分,分别对应了数据处理、特征提取、位置预测和去除环境干扰的功能。通过将采集到的CSI信息依次通过这四个部分,我们就可以得到和环境无关的位置预测。

  • 第一章 作品简介

1.1 作品背景

1.1.1 政策导向

省(市)

政策

重要内容

四川省

《四川省“5+1”重点特色园区培育发展三年行动计划(2021—2023年)》

要配套建设为企业服务的标准厂房、孵化器、仓储物流等公共服务平台。聚焦产业应用开展5G、大数据中心、人工智能、工业互联网、物联网、新能源汽车充电桩等新型基础设施建设,搭建信息技术应用场景,促进特色园区数字化、网络化、智能化转型,建设智慧园区。

广州市

《关于推进新一代人工智能产业发展的行动计划(2020-2022年)》

面向5G(第五代移动通信)、物联网、汽车电子、智能终端等领域,引进和培育一批具有自主知识产权、具有行业影响力的集成电路设计企业。

江西省

《江西省数字经济发展三年行动计划(2020-2022年)》

按照核心基地+产业主体区+特色功能区的布局,推动打造移动物联网核心基地,全力推进智联小镇、智慧科技创新小镇等建设,加快建设国家级移动物联网战略性新兴产业集群和新型工业化示范基地;支持围绕物联网传感器、终端研发制造、软件开发等领域培育移动物联网产业集聚区,打造移动物联网产业主体区。鼓励各地建设一批移动物联网特色产业集群和应用功能区。

重庆市

《重庆市新型基础设施重大项目建设行动方案(2020—2022年)》

强化重大项目的牵引与带动作用,积极布局5G、数据中心、人工智能、物联网、工业互联网等新型基础设施建设,有序推进数字设施化、设施数字化进程,为全市经济社会高质量发展注入新动能。

北京市

《北京市加快新型基础设施建设行动方案(2020-2022年)》

传统基础设施赋能。加快公路、铁路、轨道交通、航空、电网、水务等传统基建数字化改造和智慧化升级,助推京津冀基础设施互联互通。开展前瞻性技术研究,加快创新场景应用落地,率先推动移动互联网、物联网、人工智能等新兴技术与传统基建运营实景的跨界融合,形成全智慧型的基建应用生态链,打造传统基建数字化全国标杆示范。

12020年各省市对加快工业互联网建设相关政策

1.1.2 社会需求

工业制造的蓬勃发展不断推动我国制造领域的技术变革,物联网和人工智能技术的出现,使智能化生产和智能工厂等概念成为可能。我国作为全球最大的发展中国家,加速工业发展对推动国家实力增长具有深远的意义。目前,我国工业在产业规模、产业结构和自主创新方面都已经取得了长足发展,但随着人力储备不足问题的日益突出一级国家化竞争的日益激烈,自动化生产、智能化管理、高效成本管理成为提升竞争力的关键。而在智能化改造中,传统工业生产面临许多困难,例如工业场景下的室内定位技术。实现室内定位技术,能够实时追踪和调配人员并做到对自动化生产各环节的监控,对提升生产效率有积极意义。

    在工业场景中,室内定位扮演着重要的角色。通过精度较高的室内定位技术,管理者可以实现对生产人员的实时监控和动态调度,从而杜绝隐患,提高工作效率;同时,工厂可以获取物料和车辆的实时位置,实现物料的自动调拨、周转和货物运输等;此外,高精度的定位技术也是工业机器人等投入自动化生产的前提。

1.1.3 现存问题

(1)原有室外定位技术无法直接应用于室内。

    现有室外定位服务主要通过全球卫星定位系统(即GPS)技术来实现。全球卫星定位系统可以为户外用户提供高精度的定位服务,但其存在局限性:GPS信号公率非常低,信号接受要求较高,在室外天线与卫星之间不存在阻碍,可以达到较好的定位结果。但是涉及到室内定位时,由于受建筑物阻挡,导致卫星信号到达室内后快速衰减,无法满足室内覆盖要求,使用GPS信号来进行室内定位几乎成为不可能。

(2)工业生产中室内环境的复杂性

工业生产中,室内环境远比室外环境复杂,无线电波易受障碍物阻挡,发生反射、折射或散射,形成非视距传播(即NLOS,非视距通信是指接收机、发射机之间非直接的点对点的通信。非视距最直接的解释是通信的两点视线受阻,彼此看不到对方,菲涅尔区大于50%的范围被阻挡 ),严重影响了定位精度。另外,室内生产环境布局和拓扑易受人为因素影响,导致各种信号传播发生变化,从而降低基于特征匹配原理的定位技术性能。

(3)现有室内独立定位系统的缺陷

    目前较为流行的定位系统多为独立定位系统,即他们大都是为一个特殊的应用环境设计的,因此会导致以下问题:

1)目标检测存在缺陷:大多数定位系统依赖标签之间的匹配,因此它们难以检测到与目标标签共存于同意环境中的不同标签的目标。

2)定位鲁棒性和精度低:独立系统在信息获取方面受到限制,难以实现。

3)环境适应性差:在一种实际场景中表现良好的独立定位系统可能在另一种实际场景中表现差。

1.2 现状分析

1.2.1 室内定位信号指标的选用

随着AP (Access Point)技术的成熟和便携式WiFi设备的普及,基于WiFi的室内定位引起了众多研究者的关注。对比蓝牙和UWB等技术需要额外的部署成本,WiFi信号几乎无处不在,这大大降低了信号获取的难度。现有研究通常通过接收信号强度指标(RSSI)来计算位置。针对RSSI在环境变化或存在多路径效应时容易出现波动的问题,提出了基于RSSI指纹的定位方法。数据库要根据环境的变化,所以它不适合不断变化的环境。近年来,随着正交频分复用(OFDM)系统的广泛应用,许多基于信道状态信息(CSI)的解决方案被提出。我们将首先对比RSSI和CSI的特点,并分析CSI应用于室内定位的优势。

在室内环境中由于多径效应,无线信号在发射机和接收机之间通过多条路径传播。

图1 多径效应

由于RSSI信号本身的多径效应的缺点使得基于RSSI指纹的定位系统的应用场景受到了极大的限制,具体而言,作为 MAC 层信息RSSI是无线信号多径信号强度的累加,无法根据RSSI分辨视距径的传输信息也无法分辨各个传输径的传输信息,少数径上信号幅度的波动都可能对RSSI值造成较大的改变。而且RSSI只能提供接收信号传输特征的粗略信息,无法获得更为细致的定位信息。而且很多有用信息如相位都被忽略,因此不能很好地反映信号在链路中的传播特性。此外RSSI很容易受环境变动的影响,即便在静态环境中也会出现一定范围的波动。因此,室内多径效应大大限制了RSSI的感知能力,使其只能用于实现一些粗粒度的室内定位等感知任务。

介绍CSI之前先描述OFDM,在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中,宽带被分为多个具有不同中心频率且相互正交的子载波窄带信道。传输数据时,OFDM中的高速比特流转换成多个相对低速的并行比特流,其中每个比特流都被传输到特定的子载波上。由于这些子载波相互正交,多个比特流同时在多个子载波上传输不会造成相互干扰。与其他传输方案相比,OFDM对多径干扰具有更好的鲁棒性。图3展示了OFDM子载波:

图2 OFDM子载波

在2009年正式批准的IEEE802.11n标准中,无线网卡支持物理层信息的提取,因此可通过提取无线网卡中的信道响应信息来获取信道状态信息。目前已经实现修改无线网卡驱动和安装CSI Tools来获得CSI数据,其应用范围越来越大,实用性不断提高。相比于单值的RSS,其不仅从频域表征了信道状态并且附加了相位信息。CSI作为一种细粒度的物理层信息,反映了在发送器与接收器之间无线信道的传输特性而且对信道变化具有很高的灵敏度。

(CSI)信道状态信息表示发射机和接收机之间通信链路的信道特性,反映了信号在传播过程中的散射、衰减等效应。IEEE 802.11n使用OFDM技术,将信号通过多个具有不同频率且相互正交的子载波进行传输。

CSI是物理层的一种更细粒度的属性值,不仅描述了频域空间对所对应的每个子载波的幅度和相位,表现了无线信号在不同子信道上的衰减情况,还能将其变换到时域,间接地得到每条径上的传输特征,表现了无线信号在不同传输径的衰减情况。

正交频分复用技术(OFDM)是IEEE802.11n无线局域网标准协议核心部分之一,该技术增强了无线信号抗多径干扰的性能。对基于WiFi信号定位的系统来说,正是由于该技术的出现,可以利用WiFi设备从物理层提取出信道状态信息。不同于RSS值是所有传输径累加的结果,从CSI信号中能获得各个子载波上信号的传输特征,是一种更细粒度的传输特征,因此基于CSI信号定位的系统通常能获得更高的定位精度。

当实际物体出现在不同位置时,由于CSI信号的特点,能够更加细致地展现特征差异。为清晰展示,在两个不同位置的参考点处,取1根发射天线和3根接收天线对之间的30子载波的50个数据包,如图4和图5所示,两个不同位置不同接收天线处的子载波幅度值不相同,可见能将CSI信号反映的各个子信道的传输特性与不同位置分别对应,这也是CSI信号能用于室内定位的原因。

图3 位置1接收天线对子载波幅值

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博士僧小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值