个人分析如下:
- 数据库读、写比例。常理客户是无法容忍长时间[10秒以上]无法打开页面。所以读表权重高于写表操作。
- 根据产品的业务需求判断数据库的容量级别。每天都写库容量,每月,每年。可以考虑根据时间索引并分表
- 如何减少表关联带来的巨大数据量,导致内存泄漏,服务崩溃。多次单表查询的效率远高于大表的级联查询
- 数据表属于资源类,数据表之间的关系属于资源关系类。资源关系可以考虑中间表或者缓存解决,缓存常用的数据关系,具体要根据需求而定
- 写表既锁表,而且索引越多,写表操作操作越大。写入数据先缓存,批量导入数据库。
- 缓存热门资源信息
- 关于索引。只要被索引的列(例如回复表的标题ID)不被频繁更新,即使索引所在地行的其它列被频繁update,索引也不会被更新从而产生性能消耗