探索Ray Serve:用Python轻松部署AI推理服务

引言

在当今快速发展的人工智能时代,如何高效地在生产环境中部署和管理AI模型是一个重要挑战。Ray Serve是一款强大的模型服务库,它允许开发者用Python代码轻松地构建和部署在线推理API。本篇文章将带你从头开始,学习如何利用Ray Serve部署一个简单的OpenAI推理链,并探讨如何配置资源以提高效率。

主要内容

什么是Ray Serve?

Ray Serve是一个用于构建可扩展模型服务的库,它支持系统组合,允许开发者通过Python代码创建复杂的推理服务,包含多条链和业务逻辑。

环境准备

首先你需要安装Ray Serve:

pip install ray[serve]

一般部署流程

在Ray Serve中,服务的部署通常包括以下步骤:

  1. 导入Ray Serve和Starlette的请求模块。
  2. 定义Ray Serve部署类。
  3. 绑定模型到部署。
  4. 运行并测试部署。

示例:部署OpenAI推理链

我们将通过一个简单的示例,展示如何部署一个自定义提示的OpenAI推理链。

代码示例

# 0: 导入ray serve和请求模块
from ray import serve
from starlette.requests import Request

# 安装需要的依赖包
from langchain.chains import LLMChain
from langchain_core.prompts imp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值