引言
在当今快速发展的人工智能时代,如何高效地在生产环境中部署和管理AI模型是一个重要挑战。Ray Serve是一款强大的模型服务库,它允许开发者用Python代码轻松地构建和部署在线推理API。本篇文章将带你从头开始,学习如何利用Ray Serve部署一个简单的OpenAI推理链,并探讨如何配置资源以提高效率。
主要内容
什么是Ray Serve?
Ray Serve是一个用于构建可扩展模型服务的库,它支持系统组合,允许开发者通过Python代码创建复杂的推理服务,包含多条链和业务逻辑。
环境准备
首先你需要安装Ray Serve:
pip install ray[serve]
一般部署流程
在Ray Serve中,服务的部署通常包括以下步骤:
- 导入Ray Serve和Starlette的请求模块。
- 定义Ray Serve部署类。
- 绑定模型到部署。
- 运行并测试部署。
示例:部署OpenAI推理链
我们将通过一个简单的示例,展示如何部署一个自定义提示的OpenAI推理链。
代码示例
# 0: 导入ray serve和请求模块
from ray import serve
from starlette.requests import Request
# 安装需要的依赖包
from langchain.chains import LLMChain
from langchain_core.prompts imp