分布式执行引擎ray入门--(5)Ray Serve

文章介绍了如何使用RayServe框架部署和管理Transformer模型,包括单个模型部署、多副本设置以及模型间的组合(如翻译和摘要)。它展示了如何创建、部署和调用这些服务,以及客户端如何与之交互。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import requests
from starlette.requests import Request
from typing import Dict

from ray import serve


# 1: Define a Ray Serve application.
@serve.deployment
class MyModelDeployment:
    def __init__(self, msg: str):
        # Initialize model state: could be very large neural net weights.
        self._msg = msg

    def __call__(self, request: Request) -> Dict:
        return {"result": self._msg}


app = MyModelDeployment.bind(msg="Hello world!")

# 2: Deploy the application locally.
serve.run(app, route_prefix="/")

# 3: Query the application and print the result.
print(requests.get("http://localhost:8000/").json())
# {'result': 'Hello world!'}

server脚本:

# File name: serve_quickstart.py
from starlette.requests import Request

import ray
from ray import serve

from transformers import pipeline


@serve.deployment(num_replicas=2, ray_actor_options={"num_cpus": 0.2, "num_gpus": 0})
class Translator:
    def __init__(self):
        # Load model
        self.model = pipeline("translation_en_to_fr", model="t5-small")

    def translate(self, text: str) -> str:
        # Run inference
        model_output = self.model(text)

        # Post-process output to return only the translation text
        translation = model_output[0]["translation_text"]

        return translation

    async def __call__(self, http_request: Request) -> str:
        english_text: str = await http_request.json()
        return self.translate(english_text)


translator_app = Translator.bind()

确保server脚本启动 

serve run serve_quickstart:translator_app

默认在服务在http://127.0.0.1:8000/ 运行

client脚本

# File name: model_client.py
import requests

english_text = "Hello world!"

response = requests.post("http://127.0.0.1:8000/", json=english_text)
french_text = response.text

print(french_text)

测试: 

python model_client.py

组合

# File name: serve_quickstart_composed.py
from starlette.requests import Request

import ray
from ray import serve
from ray.serve.handle import DeploymentHandle

from transformers import pipeline


@serve.deployment
class Translator:
    def __init__(self):
        # Load model
        self.model = pipeline("translation_en_to_fr", model="t5-small")

    def translate(self, text: str) -> str:
        # Run inference
        model_output = self.model(text)

        # Post-process output to return only the translation text
        translation = model_output[0]["translation_text"]

        return translation


@serve.deployment
class Summarizer:
    def __init__(self, translator: DeploymentHandle):
        self.translator = translator

        # Load model.
        self.model = pipeline("summarization", model="t5-small")

    def summarize(self, text: str) -> str:
        # Run inference
        model_output = self.model(text, min_length=5, max_length=15)

        # Post-process output to return only the summary text
        summary = model_output[0]["summary_text"]

        return summary

    async def __call__(self, http_request: Request) -> str:
        english_text: str = await http_request.json()
        summary = self.summarize(english_text)

        translation = await self.translator.translate.remote(summary)
        return translation


app = Summarizer.bind(Translator.bind())

serve run serve_quickstart_composed:app
# File name: composed_client.py
import requests

english_text = (
    "It was the best of times, it was the worst of times, it was the age "
    "of wisdom, it was the age of foolishness, it was the epoch of belief"
)
response = requests.post("http://127.0.0.1:8000/", json=english_text)
french_text = response.text

print(french_text)

测试:

python composed_client.py

结果:

c'était le meilleur des temps, c'était le pire des temps .
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值