图的概念以及应用

一、为什么要有图?

        1、线性表局限于一个直接前驱和一个直接后继的关系

        2、树也只能有一个直接前驱也就是父节点

        3、当我们需要表示多对多的关系时, 这里我们就用到了图

二、什么是图?

图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为。 结点也可以称为顶点。如图:

 三、图的常用概念

        顶点(vertex):A,B,C,D,E

        边(edge): 顶点之间的连接线

        路径

        无向图(右图)

 四、图的表示方式

        图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

邻接矩阵

        邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1....n个点。

         

 0:表示俩个顶点没有连接

1:表示俩个顶点是连接的【也可以用权值来表示】

邻接表

        1、邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失.

        2、邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成

    

 说明:

        标号为0的结点的相关联的结点为 1 2 3 4

        标号为1的结点的相关联结点为0 4,

        标号为2的结点相关联的结点为 0 4 5

        ....

 五、“图的应用”

        要求: 代码实现如下图结构.

     

 思路:

        使用一个ArrayList来保存顶点ABCDE

        用一个二维数组来保存邻接矩阵

 代码实现:       

//创建图
class Graph {

    //保存顶点
    ArrayList<String> verTexs = new ArrayList<>();
    //保存邻接矩阵
    int[][] edge;
    //保存边的个数
    int numsOfEdge = 0;

    //n 顶点的个数
    public Graph(int n) {
        edge = new int[n][n];

    }

    //增加顶点
    public void addVertex(String vertex) {
        verTexs.add(vertex);
    }

    //增加边
    /**
     * 
     * @param v1 顶点
     * @param v2 顶点
     * @param weight 权值,0代表未连接,1代表已连接
     */
    public void addEdge(int v1, int v2, int weight) {
        edge[v1][v2] = weight;
        edge[v2][v1] = weight;
        numsOfEdge++;
    }

    //遍历邻接矩阵
    public void show() {
        for (int[] edges : edge) {
            System.err.println(Arrays.toString(edges));
        }
    }

    //返回顶点个数
    public int VertexsNums() {
        return verTexs.size();
    }

    //返回边的个数
    public int EdgesNums() {
        return numsOfEdge;
    }

    //返回顶点之间对应的权值
    public int getWeight(int v1, int v2) {
        return edge[v1][v2];
    }

    //通过下标返回对应的顶点
    public String getVertex(int index) {
        return verTexs.get(index);
    }
}

测试: 

 public static void main(String[] args) {
        //测试
        int n = 5 ;//顶点的个数
        String[] verTex = {"A","B","C","D","E"};

        Graph graph = new Graph(n) ;

        //插入顶点
        for (int i = 0; i < verTex.length; i++) {
            graph.addVertex(verTex[i]);
        }
        //增加边的关系
        //A-C A-B B-C B-D B-E
        graph.addEdge(0,1,1);
        graph.addEdge(0,2,1);
        graph.addEdge(1,2,1);
        graph.addEdge(1,3,1);
        graph.addEdge(1,4,1);

        //显示图
        graph.show();
    }

 结果:

 

六、图的遍历

所谓图的遍历,即是对结点(顶点)的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: (1)深度优先遍历 (2)广度优先遍历

(一)、图的深度优先搜索(Depth First Search) :

1、深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。

2、我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。

3、显然,深度优先搜索是一个递归的过程

深度优先遍历算法步骤

1、访问初始结点v,并标记结点v为已访问。

2、查找结点v的第一个邻接结点w。

3、若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。

4、若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。

5、查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

 拿上图解释:

1、假设从A结点开始遍历。首先将A结点设置成已访问【可以通过一个boolean数组进行判断】

    //判断结点是否被访问过
    boolean[] isVisited ;

2、访问 A 结点第一个邻接结点 B,判断 B 没有被访问过,将 B 设置为初始结点,

3、访问与 B 的第一个邻接结点 C,判断 C 也没有被访问过,将 C 设置为初始结点, C 的邻接节点A,B 但都已经访问过了,所以回溯到 第一步,从A的下一个临接节点B开始

4、B-D是连接的,判断D没有被访问过,将D设置为初始节点,访问D的相邻节点,D没有相邻节点,继续回溯到第一步,从A的下一个临接节点B开始

5、B-E是连接的,判断E没有访问过,最后访问E

代码实现:

//得到结点v的第一个邻接结点w的下标,index结点v的下标
    public int getFirstNeighbor(int index) {
        for (int i = 0; i < verTexs.size(); i++) {
            if (edge[index][i] > 0) {
                return i;
            }
        }
        return -1;
    }

    //得到结点v的下一个邻接结点
    public int getNextNeighbor(int v, int w) {
        for (int i = w + 1; i < verTexs.size(); i++) {
            if (edge[v][i] > 0) {
                return i;
            }
        }
        return -1;
    }

    //深度优先遍历--只是对一个结点的遍历,index是第一个结点的下标
    public void dfs(boolean[] isVisited, int index) {
        //访问第一个结点,并将它设置成已访问
        System.out.print(getVertex(index) + "--->");
        isVisited[index] = true;
        //获取第一个邻接结点 w 的下标
        int w = getFirstNeighbor(index);
        //判断w是否存在
        while (w != -1) {
            if (!isVisited[w]) {
                //没有被访问过
                dfs(isVisited, w);
            }
            //被访问过,获取下一个邻接结点
            w = getNextNeighbor(index, w);
        }
    }

    //遍历所有结点
    public void dfs() {
        for (int i = 0; i < verTexs.size(); i++) {
            if (!isVisited[i]) {
                dfs(isVisited, i);
            }
        }
    }

(二)、图的广度优先搜索(Broad First Search) :

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点

广度优先遍历算法步骤:

1、访问初始结点v并标记结点v为已访问。

2、结点v入队列

3、当队列非空时,继续执行,否则算法结束。

4、出队列,取得队头结点u。

5、查找结点u的第一个邻接结点w。

6、若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:

         6.1 若结点w尚未被访问,则访问结点w并标记为已访问。

         6.2 结点w入队列

        6.3 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。

拿上图解释一下遍历过程:

        1、假设A为初始结点,访问并标记

        2、访问A的邻接结点B,标记访问

        3、访问A的邻接结点C,标记访问

        4、A-D并不连接,所以找到A的下一个邻接结点B继续遍历。

        5、B的邻接结点C,已经访问过,所以访问下一个邻接结点D,并标记。

        6、最后访问B的邻接结点E,并标记 

代码实现:

  //广度优先遍历--index是初始结点v 的下标
    public void bfs(boolean[] isVisited, int index) {
        int u; //头结点
        int w; //邻接结点
        //访问初始结点并标记
        System.out.println(getVertex(index) + "-->");
        isVisited[index] = true;
        //使用集合模拟队列:记录结点访问顺序
        LinkedList queue = new LinkedList();
        //将初始结点入队列
        queue.addLast(index);
        while (!queue.isEmpty()) {
            //取出头结点
            u = (Integer) queue.removeFirst();
            //找出头结点的第一个邻接结点
            w = getFirstNeighbor(u);
            while (w != -1) {
                if (!isVisited[w]) {
                    //w存在,并且没有被访问过。则访问w并标记
                    System.out.print(getVertex(w) + "-->");
                    isVisited[w] = true;
                    //将w入队列,为了能够使w结点作为初始结点继续广度优先遍历
                    queue.addLast(w);
                }
                //继续查找u的下一个邻接结点
                w = getNextNeighbor(u, w);
            }
        }
    }

    //遍历所有结点
    public void bfs() {
        //重置isVisited数组,不然还会保留深度优先遍历时的访问策略
        isVisited = new boolean[verTexs.size()];
        for (int i = 0; i < verTexs.size(); i++) {
            if (!isVisited[i]) {
                bfs(isVisited, i);
            }
        }
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲨瓜2号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值